文献检索文档翻译深度研究
Suppr Zotero 插件Zotero 插件
邀请有礼套餐&价格历史记录

新学期,新优惠

限时优惠:9月1日-9月22日

30天高级会员仅需29元

1天体验卡首发特惠仅需5.99元

了解详情
不再提醒
插件&应用
Suppr Zotero 插件Zotero 插件浏览器插件Mac 客户端Windows 客户端微信小程序
高级版
套餐订阅购买积分包
AI 工具
文献检索文档翻译深度研究
关于我们
关于 Suppr公司介绍联系我们用户协议隐私条款
关注我们

Suppr 超能文献

核心技术专利:CN118964589B侵权必究
粤ICP备2023148730 号-1Suppr @ 2025

人类口咽部不同类型急性呼吸道感染期间的独特微生物景观。

Unique microbial landscape in the human oropharynx during different types of acute respiratory tract infections.

机构信息

Department of Immunology and Microbiology, Zhongshan School of Medicine, Sun Yat-Sen University, Guangzhou, 510080, China.

Key Laboratory of Tropical Diseases Control (Sun Yat-Sen University), Ministry of Education, Guangzhou, 510080, China.

出版信息

Microbiome. 2023 Jul 24;11(1):157. doi: 10.1186/s40168-023-01597-9.


DOI:10.1186/s40168-023-01597-9
PMID:37482605
原文链接:https://pmc.ncbi.nlm.nih.gov/articles/PMC10364384/
Abstract

BACKGROUND: Secondary bacterial infections and pneumonia are major mortality causes of respiratory viruses, and the disruption of the upper respiratory tract (URT) microbiota is a crucial component of this process. However, whether this URT dysbiosis associates with the viral species (in other words, is viral type-specific) is unclear. RESULTS: Here, we recruited 735 outpatients with upper respiratory symptoms, identified the infectious virus types in 349 participants using multiplex RT-PCR, and profiled their upper respiratory microbiome using the 16S ribosomal RNA gene and metagenomic gene sequencing. Microbial and viral data were subsequently used as inputs for multivariate analysis aimed at revealing viral type-specific disruption of the upper respiratory microbiota. We found that the oropharyngeal microbiota shaped by influenza A virus (FluA), influenza B virus (FluB), respiratory syncytial virus (RSV), and human rhinovirus (HRV) infections exhibited three distinct patterns of dysbiosis, and Veillonella was identified as a prominent biomarker for any type of respiratory viral infections. Influenza virus infections are significantly correlated with increased oropharynx microbiota diversity and enrichment of functional metabolic pathways such as L-arginine biosynthesis and tetracycline resistance gene tetW. We used the GRiD algorithm and found the predicted growth rate of common respiratory pathogens was increased upon influenza virus infection, while commensal bacteria, such as Streptococcus infantis and Streptococcus mitis, may act as a colonization resistance to the overgrowth of these pathogens. CONCLUSIONS: We found that respiratory viral infections are linked with viral type-specific disruption of the upper respiratory microbiota, particularly, influenza infections uniquely associated with increased microbial diversity and growth rates of specific pathogens in URT. These findings are essential for clarifying the differences and dynamics of respiratory microbiota in healthy participants and acute respiratory viral infections, which contribute to elucidating the pathogenesis of viral-host-bacterial interactions to provide insights into future studies on effective prevention and treatment of respiratory tract infections. Video Abstract.

摘要

背景:继发细菌感染和肺炎是呼吸道病毒导致死亡的主要原因,而上呼吸道(URT)微生物组的破坏是这一过程的关键组成部分。然而,这种 URT 微生态失调是否与病毒种类有关(换句话说,是否具有病毒特异性)尚不清楚。

结果:在这里,我们招募了 735 名有上呼吸道症状的门诊患者,通过多重 RT-PCR 鉴定了 349 名参与者中的感染病毒类型,并使用 16S 核糖体 RNA 基因和宏基因组基因测序对其上呼吸道微生物组进行了分析。随后,将微生物和病毒数据作为输入,用于多变量分析,旨在揭示上呼吸道微生物组中病毒特异性的破坏。我们发现,甲型流感病毒(FluA)、乙型流感病毒(FluB)、呼吸道合胞病毒(RSV)和人类鼻病毒(HRV)感染所塑造的口咽微生物群表现出三种不同的失调模式,而韦荣球菌被确定为任何类型呼吸道病毒感染的突出生物标志物。流感病毒感染与口咽微生物群多样性增加和功能代谢途径(如 L-精氨酸生物合成和四环素耐药基因 tetW)的富集显著相关。我们使用 GRiD 算法发现,流感病毒感染后常见呼吸道病原体的预测生长速度增加,而共生细菌,如婴儿链球菌和酿脓链球菌,可能对这些病原体的过度生长起到定植抵抗作用。

结论:我们发现,呼吸道病毒感染与上呼吸道微生物组的病毒特异性破坏有关,特别是流感感染与 URT 中特定病原体的微生物多样性和生长速度的增加独特相关。这些发现对于阐明健康参与者和急性呼吸道病毒感染中呼吸道微生物组的差异和动态至关重要,有助于阐明病毒-宿主-细菌相互作用的发病机制,为呼吸道感染的有效预防和治疗提供新的思路。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/8990/10364384/fce9121bf7b8/40168_2023_1597_Fig5_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/8990/10364384/c7184a4dbf25/40168_2023_1597_Fig1_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/8990/10364384/3ea788def6c7/40168_2023_1597_Fig2_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/8990/10364384/bb1683cc2035/40168_2023_1597_Fig3_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/8990/10364384/272df62cbeea/40168_2023_1597_Fig4_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/8990/10364384/fce9121bf7b8/40168_2023_1597_Fig5_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/8990/10364384/c7184a4dbf25/40168_2023_1597_Fig1_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/8990/10364384/3ea788def6c7/40168_2023_1597_Fig2_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/8990/10364384/bb1683cc2035/40168_2023_1597_Fig3_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/8990/10364384/272df62cbeea/40168_2023_1597_Fig4_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/8990/10364384/fce9121bf7b8/40168_2023_1597_Fig5_HTML.jpg

相似文献

[1]
Unique microbial landscape in the human oropharynx during different types of acute respiratory tract infections.

Microbiome. 2023-7-24

[2]
Characterization of antibiotic resistance and host-microbiome interactions in the human upper respiratory tract during influenza infection.

Microbiome. 2020-3-17

[3]
Dysbiosis of upper respiratory tract microbiota in elderly pneumonia patients.

ISME J. 2016-1

[4]
Influenza A virus infection impacts systemic microbiota dynamics and causes quantitative enteric dysbiosis.

Microbiome. 2018-1-10

[5]
Altered Respiratory Microbiomes, Plasma Metabolites, and Immune Responses in Influenza A Virus and Methicillin-Resistant Staphylococcus aureus Coinfection.

Microbiol Spectr. 2023-8-17

[6]
Oropharyngeal microbiome profiling and its association with age and heart failure in the elderly population from the northernmost province of China.

Microbiol Spectr. 2024-10-3

[7]
The Effect of Influenza Virus on the Human Oropharyngeal Microbiome.

Clin Infect Dis. 2019-5-30

[8]
Signatures of COVID-19 Severity and Immune Response in the Respiratory Tract Microbiome.

mBio. 2021-8-31

[9]
Oropharyngeal microbial ecosystem perturbations influence the risk for acute respiratory infections in common variable immunodeficiency.

Front Immunol. 2024

[10]
Temporal dynamics of oropharyngeal microbiome among SARS-CoV-2 patients reveals continued dysbiosis even after Viral Clearance.

NPJ Biofilms Microbiomes. 2022-8-24

引用本文的文献

[1]
Feline herpesvirus type 1 infection alters the diversity of upper respiratory tract microbiota in cats.

Front Vet Sci. 2025-8-22

[2]
Respiratory microbiota, host immunity, respiratory viral infections and malignant tumors.

Front Microbiol. 2025-7-10

[3]
Comprehensive Analysis of Pathogen Diversity and Diagnostic Biomarkers in Patients with Suspected Pulmonary Tuberculosis Through Metagenomic Next-Generation Sequencing.

Infect Drug Resist. 2025-5-2

[4]
The Respiratory Tract Microbiome and Human Health.

Microb Biotechnol. 2025-5

[5]
Intestinal Microbiota Dysbiosis Role and Bacterial Translocation as a Factor for Septic Risk.

Int J Mol Sci. 2025-2-26

[6]
Gut-X axis.

Imeta. 2025-2-26

[7]
Association of tumor microbiome with survival in resected early-stage PDAC.

mSystems. 2025-3-18

[8]
Tongue coating microbial communities vary in children with Henoch-Schönlein purpura.

Sci Rep. 2025-2-14

[9]
Expert consensus on the use of oropharyngeal probiotic Bactoblis in respiratory tract infection and otitis media: available clinical evidence and recommendations for future research.

Front Pediatr. 2025-1-28

[10]
The difference of oropharyngeal microbiome during acute respiratory viral infections in infants and children.

Commun Biol. 2025-1-26

本文引用的文献

[1]
Differential Oral Microbial Input Determines Two Microbiota Pneumo-Types Associated with Health Status.

Adv Sci (Weinh). 2022-11

[2]
Super Dominant Pathobiontic Bacteria in the Nasopharyngeal Microbiota Cause Secondary Bacterial Infection in COVID-19 Patients.

Microbiol Spectr. 2022-6-29

[3]
Age-Related Changes in the Nasopharyngeal Microbiome Are Associated With Severe Acute Respiratory Syndrome Coronavirus 2 (SARS-CoV-2) Infection and Symptoms Among Children, Adolescents, and Young Adults.

Clin Infect Dis. 2022-8-24

[4]
Bacterial microbiota in upper respiratory tract of COVID-19 and influenza patients.

Exp Biol Med (Maywood). 2022-3

[5]
Diversity of Treponema denticola and Other Oral Treponeme Lineages in Subjects with Periodontitis and Gingivitis.

Microbiol Spectr. 2021-10-31

[6]
Upper respiratory tract bacterial-immune interactions during respiratory syncytial virus infection in infancy.

J Allergy Clin Immunol. 2022-3

[7]
The Burden of Respiratory Syncytial Virus in Children Under 2 Years of Age in a Rural Community in Maharashtra, India.

Clin Infect Dis. 2021-9-2

[8]
RSV pneumonia with or without bacterial co-infection among healthy children.

J Formos Med Assoc. 2022-3

[9]
Etiological and epidemiological features of acute respiratory infections in China.

Nat Commun. 2021-8-18

[10]
Outcomes of respiratory viral-bacterial co-infection in adult hospitalized patients.

EClinicalMedicine. 2021-6-10

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

推荐工具

医学文档翻译智能文献检索