Suppr超能文献

通过宏基因组下一代测序对疑似肺结核患者的病原体多样性和诊断生物标志物进行综合分析

Comprehensive Analysis of Pathogen Diversity and Diagnostic Biomarkers in Patients with Suspected Pulmonary Tuberculosis Through Metagenomic Next-Generation Sequencing.

作者信息

Li Yuecui, Li Chenghang, Fang Yu, Zhang LiLi, Ying Xiaoyan, Ren Ruotong, Zang Yinghui, Ying Dandan, Zhu Shengwei, Liu Jiao, Cao Xuefang

机构信息

Department of Infectious Disease, The First People's Hospital of Yongkang, affiliated to Hangzhou Medical College, Jinhua, People's Republic of China.

Zhejiang Key Laboratory of Digital Technology in Medical Diagnostics, Hangzhou, People's Republic of China.

出版信息

Infect Drug Resist. 2025 May 2;18:2215-2227. doi: 10.2147/IDR.S504587. eCollection 2025.

Abstract

BACKGROUND

This study aimed to investigate the co-infecting pathogens and lung microbiomes in patients with clinically confirmed pulmonary tuberculosis (TB) and explore potential diagnostic biomarkers to differentiate between varied infection patterns.

METHODS

We conducted a retrospective cohort study by analyzing 198 bronchoalveolar lavage fluid (BALF) samples collected from patients with suspected pulmonary TB. All BALF samples were sequenced using metagenomic next-generation sequencing (mNGS).

RESULTS

A total of 63 pathogens were detected in all samples. The TB group exhibited a higher diversity of pathogens (n=51) than the Non-TB group (n=37). The analysis revealed that TB patients had significantly higher pathogen counts (=0.014), and specific microorganisms, such as complex (MTBC), MTB, , and , were significantly enriched. Furthermore, the abundance of MTBC was negatively correlated with hemoglobin levels (R=-0.17, =0.015) and positive correlated with C-reactive protein (CRP) levels (R=0.16, =0.029). The random forest model combined eight differential microbes and five clinical parameters, yielding an area under the curve (AUC) of 0.86 for differentiating TB from Non-TB cohorts, whereas subgroup differentiation yielded an AUC of 0.571, demonstrating the potential for targeted diagnostics in pulmonary infections.

CONCLUSION

Our findings highlight the complexity of co-infection patterns in pulmonary TB and emphasize the potential of integrating microbial and clinical markers to improve diagnostic accuracy. This study provides valuable insights into the role of the lung microbiome in TB and informs future research on targeted therapies for this disease.

摘要

背景

本研究旨在调查临床确诊的肺结核(TB)患者中的合并感染病原体和肺部微生物群,并探索潜在的诊断生物标志物以区分不同的感染模式。

方法

我们通过分析从疑似肺结核患者收集的198份支气管肺泡灌洗液(BALF)样本进行了一项回顾性队列研究。所有BALF样本均使用宏基因组下一代测序(mNGS)进行测序。

结果

所有样本中共检测到63种病原体。TB组的病原体多样性(n = 51)高于非TB组(n = 37)。分析显示,TB患者的病原体数量显著更高(= 0.014),并且特定微生物,如结核分枝杆菌复合群(MTBC)、结核分枝杆菌(MTB)等显著富集。此外,MTBC的丰度与血红蛋白水平呈负相关(R = -0.17,= 0.015),与C反应蛋白(CRP)水平呈正相关(R = 0.16,= 0.029)。随机森林模型结合了八种差异微生物和五个临床参数,区分TB组与非TB组队列的曲线下面积(AUC)为0.86,而亚组区分的AUC为0.571,证明了肺部感染靶向诊断的潜力。

结论

我们的研究结果突出了肺结核合并感染模式的复杂性,并强调了整合微生物和临床标志物以提高诊断准确性的潜力。本研究为肺部微生物群在结核病中的作用提供了有价值的见解,并为该疾病的靶向治疗的未来研究提供了信息。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/eddd/12056525/c8751801a17f/IDR-18-2215-g0001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验