Park Sung-Hee, Kim Ji Yoon, Kim Eun Hae, Min Sung Gi, Park Shin Young
PracticalTechnology Research Group, World Institute of Kimchi, Gwangju, 61755, Republic of Korea.
Department of Seafood Science and Technology, Institute of Marine Industry, Gyeongsang National University, Tongyeong, 53064, Republic of Korea.
Heliyon. 2023 Jul 5;9(7):e17978. doi: 10.1016/j.heliyon.2023.e17978. eCollection 2023 Jul.
We developed a predictive growth model of for fresh Kimchi cabbages as a function of storage temperature (5-20 °C). The Baranyi equation used for primary modeling at these storage temperatures was suitable as a model for obtaining lag time (LT) and specific growth rate (SGR) (R = 0.97-0.98). As the temperature increased, the growth of tended to increase, with SGR values of 0.33, 0.40, 0.60 and 0.68 log colony-forming units/h at 8, 11, and 15 °C, and LT values of 5.63, 3.54, 2.23 and 1.09 h, respectively. The secondary model was determined by the non-linear regression analysis. The suitability of the modeling results for the SGR and LT value was verified by determining the mean square error (<0.01), bias factor (0.919-0.999), and accuracy factor (1.032-1.136). The predicted models can be used to predict the growth of in Kimchi cabbage at various temperatures and as an effective tool for maintaining the safe level of in the production, processing, and distribution of fresh agricultural products.
我们建立了一个新鲜泡菜白菜中[具体微生物名称未给出]的预测生长模型,该模型是储存温度(5 - 20°C)的函数。用于这些储存温度下初级建模的巴拉尼方程适合作为获取延迟时间(LT)和比生长速率(SGR)的模型(R = 0.97 - 0.98)。随着温度升高,[具体微生物名称未给出]的生长趋于增加,在8、11、15和20°C时,SGR值分别为0.33、0.40、0.60和0.68对数菌落形成单位/小时,LT值分别为5.63、3.54、2.23和1.09小时。二级模型通过非线性回归分析确定。通过确定均方误差(<0.01)、偏差因子(0.919 - 0.999)和准确因子(1.032 - 1.136),验证了建模结果对SGR和LT值的适用性。预测模型可用于预测不同温度下泡菜白菜中[具体微生物名称未给出]的生长情况,并作为维持新鲜农产品生产、加工和分销过程中[具体微生物名称未给出]安全水平的有效工具。