Suppr超能文献

一种用于对神经元中的通道噪声进行建模的快速马尔可夫方法。

A fast Markovian method for modeling channel noise in neurons.

作者信息

Ankri Norbert, Debanne Dominique

机构信息

UNIS, INSERM UMR_S1072, Aix-Marseille University, Marseille, France.

出版信息

Heliyon. 2023 Jun 7;9(6):e16953. doi: 10.1016/j.heliyon.2023.e16953. eCollection 2023 Jun.

Abstract

Channel noise results from rapid transitions of protein channels from closed to open state and is generally considered as the most dominant source of electrical noise causing membrane-potential fluctuations even in the absence of synaptic inputs. The simulation of a realistic channel noise remains a source of possible error. Although the Markovian method is considered as the golden standard for appropriate description of channel noise, its computation time increasing exponentially with the number of channels, it is poorly suitable to simulate realistic features. We describe here a novel algorithm at discrete time unit for simulating ion channel noise based on Markov chains (MC). Although this new algorithm refers to a Monte-Carlo process, it only needs few random numbers whatever the number of channels involved. Our fast MC (FMC) model does not exhibit the drawbacks due to approximations based on stochastic differential equations and the values of spike jitter are comparable to those obtained with the true Markovian method. In fact, we show here, that these drawbacks can be highlighted in the approximation based on stochastic differential equation methods even for a high number of channels (standard deviation of the 5th spike is about two-fold larger than that of MCF or true Markovian method for 5000 sodium channels). The FMC model appears therefore as the most accurate method to simulate channel noise with a fast execution time that does not depend on the channel number.

摘要

通道噪声源于蛋白质通道从关闭状态到开放状态的快速转变,即使在没有突触输入的情况下,通常也被认为是导致膜电位波动的最主要电噪声源。逼真的通道噪声模拟仍然是可能的误差来源。尽管马尔可夫方法被视为适当描述通道噪声的黄金标准,但其计算时间随通道数量呈指数增长,不太适合模拟逼真的特征。我们在此描述一种基于马尔可夫链(MC)在离散时间单位模拟离子通道噪声的新算法。虽然这种新算法涉及蒙特卡罗过程,但无论涉及的通道数量多少,它只需要很少的随机数。我们的快速MC(FMC)模型没有基于随机微分方程的近似所带来的缺点,并且尖峰抖动值与用真正的马尔可夫方法获得的值相当。事实上,我们在此表明,即使对于大量通道,基于随机微分方程方法的近似中这些缺点也会凸显出来(对于5000个钠通道,第5个尖峰的标准差比MCF或真正的马尔可夫方法大约大两倍)。因此,FMC模型似乎是模拟通道噪声的最准确方法,执行速度快且不依赖于通道数量。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/0b3e/10361033/8e05c5c86c08/gr1.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验