Suppr超能文献

具有时间尺度分离的马尔可夫链的随机屏蔽和边缘重要性。

Stochastic shielding and edge importance for Markov chains with timescale separation.

机构信息

Department of Mathematics and Statistics, University of Nevada, Reno, Reno, Nevada, United States of America.

Department of Electrical Engineering and Computer Science, Case Western Reserve University, Cleveland, Ohio, United States of America.

出版信息

PLoS Comput Biol. 2018 Jun 18;14(6):e1006206. doi: 10.1371/journal.pcbi.1006206. eCollection 2018 Jun.

Abstract

Nerve cells produce electrical impulses ("spikes") through the coordinated opening and closing of ion channels. Markov processes with voltage-dependent transition rates capture the stochasticity of spike generation at the cost of complex, time-consuming simulations. Schmandt and Galán introduced a novel method, based on the stochastic shielding approximation, as a fast, accurate method for generating approximate sample paths with excellent first and second moment agreement to exact stochastic simulations. We previously analyzed the mathematical basis for the method's remarkable accuracy, and showed that for models with a Gaussian noise approximation, the stationary variance of the occupancy at each vertex in the ion channel state graph could be written as a sum of distinct contributions from each edge in the graph. We extend this analysis to arbitrary discrete population models with first-order kinetics. The resulting decomposition allows us to rank the "importance" of each edge's contribution to the variance of the current under stationary conditions. In most cases, transitions between open (conducting) and closed (non-conducting) states make the greatest contributions to the variance, but there are exceptions. In a 5-state model of the nicotinic acetylcholine receptor, at low agonist concentration, a pair of "hidden" transitions (between two closed states) makes a greater contribution to the variance than any of the open-closed transitions. We exhaustively investigate this "edge importance reversal" phenomenon in simplified 3-state models, and obtain an exact formula for the contribution of each edge to the variance of the open state. Two conditions contribute to reversals: the opening rate should be faster than all other rates in the system, and the closed state leading to the opening rate should be sparsely occupied. When edge importance reversal occurs, current fluctuations are dominated by a slow noise component arising from the hidden transitions.

摘要

神经元通过离子通道的协调开闭产生电脉冲(“尖峰”)。具有电压依赖性跃迁率的马尔可夫过程以复杂、耗时的模拟为代价,捕获尖峰产生的随机性。Schmandt 和 Galán 引入了一种新方法,基于随机屏蔽逼近,作为一种快速、准确的方法,用于生成具有出色的第一和第二矩一致性的近似样本路径,与精确的随机模拟非常吻合。我们之前分析了该方法出色准确性的数学基础,并表明对于具有高斯噪声逼近的模型,离子通道状态图中每个顶点的占据的固定方差可以表示为图中每条边的不同贡献之和。我们将此分析扩展到具有一阶动力学的任意离散群体模型。所得的分解允许我们对每条边在固定条件下对电流方差的贡献的“重要性”进行排序。在大多数情况下,从打开(传导)到关闭(非传导)状态的跃迁对方差的贡献最大,但也有例外。在烟碱型乙酰胆碱受体的 5 态模型中,在低激动剂浓度下,一对“隐藏”跃迁(在两个关闭状态之间)对方差的贡献大于任何打开-关闭跃迁。我们在简化的 3 态模型中详尽地研究了这种“边重要性反转”现象,并获得了每条边对打开状态方差的贡献的精确公式。两个条件促成了反转:打开率应该比系统中的所有其他速率都快,并且导致打开率的关闭状态应该很少被占据。当边重要性反转发生时,电流波动主要由隐藏跃迁产生的缓慢噪声分量主导。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/2c18/6023243/3da96ca41fd5/pcbi.1006206.g001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验