Suppr超能文献

在AlphaFold蛋白质结构数据库文件中自动识别硫族元素键:这可行吗?

Automated identification of chalcogen bonds in AlphaFold protein structure database files: is it possible?

作者信息

Carugo Oliviero, Djinović-Carugo Kristina

机构信息

Department of Chemistry, University of Pavia, Pavia, Italy.

Max Perutz Labs, Department of Structural and Computational Biology, University of Vienna, Vienna, Austria.

出版信息

Front Mol Biosci. 2023 Jul 6;10:1155629. doi: 10.3389/fmolb.2023.1155629. eCollection 2023.

Abstract

Protein structure prediction and structural biology have entered a new era with an artificial intelligence-based approach encoded in the AlphaFold2 and the analogous RoseTTAfold methods. More than 200 million structures have been predicted by AlphaFold2 from their primary sequences and the models as well as the approach itself have naturally been examined from different points of view by experimentalists and bioinformaticians. Here, we assessed the degree to which these computational models can provide information on subtle structural details with potential implications for diverse applications in protein engineering and chemical biology and focused the attention on chalcogen bonds formed by disulphide bridges. We found that only 43% of the chalcogen bonds observed in the experimental structures are present in the computational models, suggesting that the accuracy of the computational models is, in the majority of the cases, insufficient to allow the detection of chalcogen bonds, according to the usual stereochemical criteria. High-resolution experimentally derived structures are therefore still necessary when the structure must be investigated in depth based on fine structural aspects.

摘要

蛋白质结构预测和结构生物学已随着AlphaFold2及类似的RoseTTAfold方法中编码的基于人工智能的方法进入了一个新时代。AlphaFold2已根据其一级序列预测了超过2亿个结构,实验人员和生物信息学家自然从不同角度对这些模型以及该方法本身进行了研究。在此,我们评估了这些计算模型能够在多大程度上提供有关细微结构细节的信息,这些细节可能对蛋白质工程和化学生物学中的各种应用产生影响,并将注意力集中在由二硫键形成的硫属元素键上。我们发现,在实验结构中观察到的硫属元素键只有43%存在于计算模型中,这表明根据通常的立体化学标准,在大多数情况下,计算模型的准确性不足以检测到硫属元素键。因此,当必须基于精细的结构方面深入研究结构时,高分辨率的实验衍生结构仍然是必要的。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/ed62/10359982/7102bde92523/fmolb-10-1155629-g001.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验