Tang Tongxiang, Shen Zhonghui, Wang Jian, Xu Shiqi, Jiang Jiaxi, Chang Jiahui, Guo Mengfan, Fan Youjun, Xiao Yao, Dong Zhihao, Huang Houbing, Li Xiaoyan, Zhang Yihui, Wang Danyang, Chen Long-Qing, Wang Ke, Zhang Shujun, Nan Ce-Wen, Shen Yang
State Key Lab of New Ceramics and Fine Processing, School of Materials Science and Engineering, Tsinghua University, Beijing 100084, China.
State Key Laboratory of Advanced Technology for Materials Synthesis and Processing, Center of Smart Materials and Devices, Wuhan University of Technology, Wuhan 430070, China.
Natl Sci Rev. 2023 Jun 22;10(8):nwad177. doi: 10.1093/nsr/nwad177. eCollection 2023 Aug.
Flexible piezoelectric materials capable of withstanding large deformation play key roles in flexible electronics. Ferroelectric ceramics with a high piezoelectric coefficient are inherently brittle, whereas polar polymers exhibit a low piezoelectric coefficient. Here we report a highly stretchable/compressible piezoelectric composite composed of ferroelectric ceramic skeleton, elastomer matrix and relaxor ferroelectric-based hybrid at the ceramic/matrix interface as dielectric transition layers, exhibiting a giant piezoelectric coefficient of 250 picometers per volt, high electromechanical coupling factor of 65%, ultralow acoustic impedance of 3MRyl and high cyclic stability under 50% compression strain. The superior flexibility and piezoelectric properties are attributed to the electric polarization and mechanical load transfer paths formed by the ceramic skeleton, and dielectric mismatch mitigation between ceramic fillers and elastomer matrix by the dielectric transition layer. The synergistic fusion of ultrahigh piezoelectric properties and superior flexibility in these polymer composites is expected to drive emerging applications in flexible smart electronics.
能够承受大变形的柔性压电材料在柔性电子学中起着关键作用。具有高压电系数的铁电陶瓷本质上是脆性的,而极性聚合物的压电系数较低。在此,我们报道了一种由铁电陶瓷骨架、弹性体基体以及位于陶瓷/基体界面处的基于弛豫铁电体的杂化材料作为介电转变层组成的高度可拉伸/可压缩压电复合材料,其展现出250皮米每伏的巨压电系数、65%的高机电耦合系数、3兆瑞利的超低声阻抗以及在50%压缩应变下的高循环稳定性。优异的柔韧性和压电性能归因于陶瓷骨架形成的电极化和机械载荷传递路径,以及介电转变层减轻了陶瓷填料与弹性体基体之间的介电失配。这些聚合物复合材料中超高压电性能与优异柔韧性的协同融合有望推动柔性智能电子学中的新兴应用。