Amsterdam UMC, University of Amsterdam, Department of Psychiatry, Amsterdam Neuroscience, Amsterdam, The Netherlands.
Mohn Medical Imaging and Visualization Centre, Department of Radiology, Haukeland University Hospital, Bergen, Norway.
Psychol Med. 2024 Feb;54(3):495-506. doi: 10.1017/S0033291723002040. Epub 2023 Jul 24.
Electroconvulsive therapy (ECT) is the most effective intervention for patients with treatment resistant depression. A clinical decision support tool could guide patient selection to improve the overall response rate and avoid ineffective treatments with adverse effects. Initial small-scale, monocenter studies indicate that both structural magnetic resonance imaging (sMRI) and functional MRI (fMRI) biomarkers may predict ECT outcome, but it is not known whether those results can generalize to data from other centers. The objective of this study was to develop and validate neuroimaging biomarkers for ECT outcome in a multicenter setting.
Multimodal data (i.e. clinical, sMRI and resting-state fMRI) were collected from seven centers of the Global ECT-MRI Research Collaboration (GEMRIC). We used data from 189 depressed patients to evaluate which data modalities or combinations thereof could provide the best predictions for treatment remission (HAM-D score ⩽7) using a support vector machine classifier.
Remission classification using a combination of gray matter volume and functional connectivity led to good performing models with average 0.82-0.83 area under the curve (AUC) when trained and tested on samples coming from the three largest centers ( = 109), and remained acceptable when validated using leave-one-site-out cross-validation (0.70-0.73 AUC).
These results show that multimodal neuroimaging data can be used to predict remission with ECT for individual patients across different treatment centers, despite significant variability in clinical characteristics across centers. Future development of a clinical decision support tool applying these biomarkers may be feasible.
电抽搐治疗(ECT)是治疗抵抗性抑郁症患者最有效的干预措施。临床决策支持工具可以指导患者选择,以提高整体反应率并避免无效治疗带来的不良反应。初步的小规模单中心研究表明,结构磁共振成像(sMRI)和功能磁共振成像(fMRI)生物标志物都可能预测 ECT 疗效,但尚不清楚这些结果是否可以推广到其他中心的数据。本研究的目的是在多中心环境中开发和验证神经影像学 ECT 疗效的生物标志物。
多模态数据(即临床、sMRI 和静息态 fMRI)从全球 ECT-MRI 研究协作组织(GEMRIC)的七个中心采集。我们使用 189 名抑郁症患者的数据来评估哪些数据模态或它们的组合可以使用支持向量机分类器为治疗缓解(HAM-D 评分 ⩽7)提供最佳预测。
使用灰质体积和功能连接的组合进行缓解分类,在来自三个最大中心( = 109)的样本上进行训练和测试时,得到了性能良好的模型,平均曲线下面积(AUC)为 0.82-0.83,当使用留一站点交叉验证进行验证时,AUC 仍然可以接受(0.70-0.73)。
这些结果表明,尽管各中心的临床特征存在显著差异,但多模态神经影像学数据可用于预测不同治疗中心的个体患者的 ECT 缓解情况。未来开发应用这些生物标志物的临床决策支持工具可能是可行的。