Suppr超能文献

来自荷兰电休克治疗联盟(DEC)的重度抑郁症患者电休克治疗效果预测模型。

A prediction model for electroconvulsive therapy effectiveness in patients with major depressive disorder from the Dutch ECT Consortium (DEC).

作者信息

Loef Dore, Hoogendoorn Adriaan W, Somers Metten, Mocking Roel J T, Scheepens Dominique S, Scheepstra Karel W F, Blijleven Maaike, Hegeman Johanna M, van den Berg Karen S, Schut Bart, Birkenhager Tom K, Heijnen Willemijn, Rhebergen Didi, Oudega Mardien L, Schouws Sigfried N T M, van Exel Eric, Rutten Bart P F, Broekman Birit F P, Vergouwen Anton C M, Zoon Thomas J C, Kok Rob M, Somers Karina, Verwijk Esmée, Rovers Jordy J E, Schuur Gijsbert, van Waarde Jeroen A, Verdijk Joey P A J, Bloemkolk Dieneke, Gerritse Frank L, van Welie Hanneke, Haarman Bartholomeus C M, van Belkum Sjoerd M, Vischjager Maurice, Hagoort Karin, van Dellen Edwin, Tendolkar Indira, van Eijndhoven Philip F P, Dols Annemiek

机构信息

Amsterdam UMC, location Vrije Universiteit Amsterdam, Department of Psychiatry, Boelelaan 1117, Amsterdam, The Netherlands.

Amsterdam Neuroscience, Mood, Anxiety, Psychosis, Sleep & Stress program, Amsterdam, The Netherlands.

出版信息

Mol Psychiatry. 2025 May;30(5):1915-1924. doi: 10.1038/s41380-024-02803-2. Epub 2024 Oct 24.

Abstract

Reliable predictors for electroconvulsive therapy (ECT) effectiveness would allow a more precise and personalized approach for the treatment of major depressive disorder (MDD). Prediction models were created using a priori selected clinical variables based on previous meta-analyses. Multivariable linear regression analysis was used, applying backwards selection to determine predictor variables while allowing non-linear relations, to develop a prediction model for depression outcome post-ECT (and logistic regression for remission and response as secondary outcome measures). Internal validation and internal-external cross-validation were used to examine overfitting and generalizability of the model's predictive performance. In total, 1892 adult patients with MDD were included from 22 clinical and research cohorts of the twelve sites within the Dutch ECT Consortium. The final primary prediction model showed several factors that significantly predicted a lower depression score post-ECT: higher age, shorter duration of the current depressive episode, severe MDD with psychotic features, lower level of previous antidepressant resistance in the current episode, higher pre-ECT global cognitive functioning, absence of a comorbid personality disorder, and a lower level of failed psychotherapy in the current episode. The optimism-adjusted R² of the final model was 19%. This prediction model based on readily available clinical information can reduce uncertainty of ECT outcomes and hereby inform clinical decision-making, as prompt referral for ECT may be particularly beneficial for individuals with the above-mentioned characteristics. However, despite including a large number of pretreatment factors, a large proportion of the variance in depression outcome post-ECT remained unpredictable.

摘要

电休克治疗(ECT)有效性的可靠预测指标将有助于采用更精确、个性化的方法治疗重度抑郁症(MDD)。基于先前的荟萃分析,利用预先选定的临床变量创建预测模型。采用多变量线性回归分析,运用向后选择法确定预测变量,同时考虑非线性关系,以建立ECT后抑郁结局的预测模型(并将缓解和反应的逻辑回归作为次要结局指标)。采用内部验证和内部-外部交叉验证来检验模型预测性能的过度拟合和可推广性。荷兰ECT联盟12个地点的22个临床和研究队列共纳入1892例成年MDD患者。最终的主要预测模型显示了几个显著预测ECT后抑郁评分较低的因素:年龄较大、当前抑郁发作持续时间较短、伴有精神病性特征的重度MDD、当前发作中先前抗抑郁药耐药性较低、ECT前整体认知功能较高、无共病性人格障碍以及当前发作中心理治疗失败程度较低。最终模型经乐观估计调整后的R²为19%。这个基于易于获得的临床信息的预测模型可以降低ECT结局的不确定性,从而为临床决策提供参考,因为对于具有上述特征的个体,及时转诊接受ECT可能特别有益。然而,尽管纳入了大量预处理因素,但ECT后抑郁结局的很大一部分变异仍然无法预测。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验