Department of Cognitive, Linguistic, and Psychological Sciences, Brown University, Providence, RI, USA.
Mortimer B. Zuckerman Mind Brain Behavior Institute, Columbia University, New York, NY, USA.
J Vis. 2023 Jul 3;23(7):13. doi: 10.1167/jov.23.7.13.
Bayesian inference theories have been extensively used to model how the brain derives three-dimensional (3D) information from ambiguous visual input. In particular, the maximum likelihood estimation (MLE) model combines estimates from multiple depth cues according to their relative reliability to produce the most probable 3D interpretation. Here, we tested an alternative theory of cue integration, termed the intrinsic constraint (IC) theory, which postulates that the visual system derives the most stable, not most probable, interpretation of the visual input amid variations in viewing conditions. The vector sum model provides a normative approach for achieving this goal where individual cue estimates are components of a multidimensional vector whose norm determines the combined estimate. Individual cue estimates are not accurate but related to distal 3D properties through a deterministic mapping. In three experiments, we show that the IC theory can more adeptly account for 3D cue integration than MLE models. In Experiment 1, we show systematic biases in the perception of depth from texture and depth from binocular disparity. Critically, we demonstrate that the vector sum model predicts an increase in perceived depth when these cues are combined. In Experiment 2, we illustrate the IC theory radical reinterpretation of the just noticeable difference (JND) and test the related vector sum model prediction of the classic finding of smaller JNDs for combined-cue versus single-cue stimuli. In Experiment 3, we confirm the vector sum prediction that biases found in cue integration experiments cannot be attributed to flatness cues, as the MLE model predicts.
贝叶斯推理理论被广泛用于建模大脑如何从模糊的视觉输入中获取三维(3D)信息。特别是,最大似然估计(MLE)模型根据其相对可靠性将来自多个深度线索的估计值进行组合,以生成最可能的 3D 解释。在这里,我们测试了一种替代的线索整合理论,称为内在约束(IC)理论,该理论假设视觉系统在观看条件变化时从视觉输入中获取最稳定的解释,而不是最可能的解释。向量和模型提供了一种实现这一目标的规范方法,其中单个线索估计是多维向量的分量,该向量的范数决定了组合估计值。单个线索估计值并不准确,但通过确定性映射与远端 3D 属性相关。在三个实验中,我们表明 IC 理论比 MLE 模型更能适应 3D 线索整合。在实验 1 中,我们展示了从纹理和双目视差中感知深度的系统性偏差。关键的是,我们证明向量和模型预测当这些线索组合时,感知深度会增加。在实验 2 中,我们说明了 IC 理论对可察觉差异(JND)的彻底重新解释,并测试了相关的向量和模型对经典发现的预测,即与单一线索刺激相比,组合线索刺激的 JND 更小。在实验 3 中,我们证实了向量和模型的预测,即线索整合实验中的偏差不能归因于平坦度线索,而 MLE 模型预测可以归因于平坦度线索。