Suppr超能文献

具有合理设计的宏观-微观分级结构的β-TCP 支架可提高血管/成骨生成能力,促进骨再生。

Beta-TCP scaffolds with rationally designed macro-micro hierarchical structure improved angio/osteo-genesis capability for bone regeneration.

机构信息

School of Materials Science and Engineering, South China University of Technology, Guangzhou, 510641, PR China.

National Engineering Research Center for Tissue Restoration and Reconstruction, South China University of Technology, Guangzhou, 510006, PR China.

出版信息

J Mater Sci Mater Med. 2023 Jul 24;34(7):36. doi: 10.1007/s10856-023-06733-3.

Abstract

The design of hierarchical porous structure in scaffolds is crucial for bone defect regenerative repair. However, bioceramic materials present a challenge in precisely constructing designed micropores owing to the limitation of forming process. To investigate micropore shape influences bone regeneration in bioceramic scaffolds with macropores, hierarchical porous scaffolds with interconnective macropores (~400 μm) and two types of micropores (spherical and fibrous) were prepared using a combination of direct ink writing (DIW) and template sacrifice methods. Compared to the scaffold with spherical micropores, the scaffold with highly interconnected fibrous micropores significantly improved cell adhesion and upregulated osteogenic and angiogenetic-related gene expression in mBMSCs and HUVECs, respectively. Furthermore, in vivo implantation experiments showed that hierarchical scaffolds with fibrous micropores accelerated the bone repair process significantly. This result can be attributed to the high interconnectivity of fibrous micropores, which promotes the transportation of nutrients and waste during bone regeneration. Our work demonstrates that hierarchical porous scaffold design, especially one with a fibrous micropore structure, is a promising strategy for improving the bone regeneration performance of bioceramic scaffolds.

摘要

支架中分层多孔结构的设计对于骨缺损再生修复至关重要。然而,由于成型工艺的限制,生物陶瓷材料在精确构建设计的微孔方面存在挑战。为了研究具有大孔的生物陶瓷支架中微孔形状对骨再生的影响,采用直接墨水书写(DIW)和模板牺牲法相结合的方法制备了具有相互连通的大孔(~400 μm)和两种类型微孔(球形和纤维状)的分级多孔支架。与具有球形微孔的支架相比,具有高度互连纤维状微孔的支架显著提高了 mBMSCs 和 HUVECs 中的细胞黏附,并分别上调了成骨和血管生成相关基因的表达。此外,体内植入实验表明,具有纤维状微孔的分级支架显著加速了骨修复过程。这一结果可归因于纤维状微孔的高度互连性,这促进了骨再生过程中的营养物质和废物的运输。我们的工作表明,分级多孔支架设计,特别是具有纤维状微孔结构的支架,是提高生物陶瓷支架骨再生性能的一种有前途的策略。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/c000/10366319/9b0912107833/10856_2023_6733_Fig1_HTML.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验