Emon Nazim Uddin, Zhang Lu, Osborne Shelby Dawn, Lanoue Mark Allen, Huang Yan, Tian Z Ryan
Cell & Molecular Biology, University of Arkansas, Fayetteville, AR 72701, USA.
Institute for Nanoscience & Engineering, University of Arkansas, Fayetteville, AR 72701, USA.
Nanomaterials (Basel). 2025 Aug 5;15(15):1198. doi: 10.3390/nano15151198.
Nanotechnologies bring a rapid paradigm shift in hard and soft bone tissue regeneration (BTR) through unprecedented control over the nanoscale structures and chemistry of biocompatible materials to regenerate the intricate architecture and functional adaptability of bone. This review focuses on the transformative analyses and prospects of current and next-generation nanomaterials in designing bioactive bone scaffolds, emphasizing hierarchical architecture, mechanical resilience, and regenerative precision. Mainly, this review elucidated the innovative findings, new capabilities, unmet challenges, and possible future opportunities associated with biocompatible inorganic ceramics (e.g., phosphates, metallic oxides) and the United States Food and Drug Administration (USFDA) approved synthetic polymers, including their nanoscale structures. Furthermore, this review demonstrates the newly available approaches for achieving customized standard porosity, mechanical strengths, and accelerated bioactivity to construct an optimized nanomaterial-oriented scaffold. Numerous strategies including three-dimensional bioprinting, electro-spinning techniques and meticulous nanomaterials (NMs) fabrication are well established to achieve radical scientific precision in BTR engineering. The contemporary research is unceasingly decoding the pathways for spatial and temporal release of osteoinductive agents to enhance targeted therapy and prompt healing processes. Additionally, successful material design and integration of an osteoinductive and osteoconductive agents with the blend of contemporary technologies will bring radical success in this field. Furthermore, machine learning (ML) and artificial intelligence (AI) can further decode the current complexities of material design for BTR, notwithstanding the fact that these methods call for an in-depth understanding of bone composition, relationships and impacts on biochemical processes, distribution of stem cells on the matrix, and functionalization strategies of NMs for better scaffold development. Overall, this review integrated important technological progress with ethical considerations, aiming for a future where nanotechnology-facilitated bone regeneration is boosted by enhanced functionality, safety, inclusivity, and long-term environmental responsibility. Therefore, the assimilation of a specialized research design, while upholding ethical standards, will elucidate the challenge and questions we are presently encountering.
纳米技术通过对生物相容性材料的纳米级结构和化学性质进行前所未有的控制,为硬骨和软骨组织再生(BTR)带来了快速的范式转变,以再生骨骼的复杂结构和功能适应性。本综述重点关注当前和下一代纳米材料在设计生物活性骨支架方面的变革性分析和前景,强调层次结构、机械弹性和再生精度。主要地,本综述阐明了与生物相容性无机陶瓷(如磷酸盐、金属氧化物)和美国食品药品监督管理局(USFDA)批准的合成聚合物相关的创新发现、新能力、未解决的挑战以及未来可能的机遇,包括它们的纳米级结构。此外,本综述展示了实现定制标准孔隙率、机械强度和加速生物活性以构建优化的面向纳米材料的支架的新方法。包括三维生物打印、静电纺丝技术和精细纳米材料(NMs)制造在内的众多策略已被充分确立,以在BTR工程中实现极高的科学精度。当代研究不断解读骨诱导剂的时空释放途径,以加强靶向治疗并促进愈合过程。此外,成功的材料设计以及骨诱导剂和骨传导剂与当代技术的融合将在该领域带来巨大成功。此外,机器学习(ML)和人工智能(AI)可以进一步解读当前BTR材料设计的复杂性,尽管这些方法需要深入了解骨组成、关系及其对生化过程的影响、干细胞在基质上的分布以及纳米材料的功能化策略,以实现更好的支架开发。总体而言,本综述将重要的技术进展与伦理考量相结合,旨在实现一个未来,即纳米技术促进的骨再生通过增强功能、安全性、包容性和长期环境责任感而得到推动。因此,在坚持伦理标准的同时采用专门的研究设计,将阐明我们目前遇到的挑战和问题。