文献检索文档翻译深度研究
Suppr Zotero 插件Zotero 插件
邀请有礼套餐&价格历史记录

新学期,新优惠

限时优惠:9月1日-9月22日

30天高级会员仅需29元

1天体验卡首发特惠仅需5.99元

了解详情
不再提醒
插件&应用
Suppr Zotero 插件Zotero 插件浏览器插件Mac 客户端Windows 客户端微信小程序
高级版
套餐订阅购买积分包
AI 工具
文献检索文档翻译深度研究
关于我们
关于 Suppr公司介绍联系我们用户协议隐私条款
关注我们

Suppr 超能文献

核心技术专利:CN118964589B侵权必究
粤ICP备2023148730 号-1Suppr @ 2025

心大星一号:一种适用于光合作用和生物能量学研究的模块化光生物反应器。

Antares I: a Modular Photobioreactor Suitable for Photosynthesis and Bioenergetics Research.

作者信息

Rodríguez-Bolaños Mónica, Vargas-Romero Gloria, Jaguer-García Girian, Aguilar-Gonzalez Zhaida I, Lagos-Romero Verónica, Miranda-Astudillo Héctor V

机构信息

Departamento de Biología Molecular y Biotecnología, Instituto de Investigaciones Biomédicas, Universidad Nacional Autónoma de México, Mexico City, Mexico.

出版信息

Appl Biochem Biotechnol. 2024 Apr;196(4):2176-2195. doi: 10.1007/s12010-023-04629-0. Epub 2023 Jul 24.


DOI:10.1007/s12010-023-04629-0
PMID:37486539
原文链接:https://pmc.ncbi.nlm.nih.gov/articles/PMC11035454/
Abstract

Oxygenic photosynthesis is responsible for most of the fixation of atmospheric CO. The microalgal community can transport atmospheric carbon into biological cycles in which no additional CO is created. This represents a resource to confront the actual climate change crisis. These organisms have evolved to adapt to several environments and different spectral distribution of light that may strongly influence their metabolism. Therefore, there is a need for development of photobioreactors specialized in addressing spectral optimization. Here, a multi-scale modular photobioreactor made from standard glass materials, ad hoc light circuits, and easily accessible, small commercial devices is described. The system is suitable to manage the principal culture variables of research in bioenergetics and photosynthesis. Its performance was tested by growing four evolutionary-distant microalgal species with different endosymbiotic scenarios: Chlamydomonas reinhardtii (Archaeplastida, green primary plastid), Polytomella parva (Archaeplastida, colorless plastid), Euglena gracilis (Discoba, green secondary plastid), and Phaeodactylum tricornutum (Stramenophiles, red secondary plastid). Our results show an improvement of biomass production, as compared to the traditional flask system. The modulation of the incident light spectra allowed us to observe a far-red adaptation in Euglena gracilis with a difference on paramylon production, and it also significantly increased the maximal cell density of the diatom species under green light. Together, these confirm that for photobioreactors with artificial light, manipulation of the light spectrum is a critical parameter for controlling the optimal performance, depending on the downstream goals.

摘要

氧光合作用负责大气中大部分二氧化碳的固定。微藻群落能够将大气中的碳输送到生物循环中,在此过程中不会产生额外的二氧化碳。这是应对当前气候变化危机的一种资源。这些生物已经进化以适应多种环境以及可能强烈影响其新陈代谢的不同光谱分布的光。因此,需要开发专门用于解决光谱优化问题的光生物反应器。在此,描述了一种由标准玻璃材料、特制光电路和易于获取的小型商业设备制成的多尺度模块化光生物反应器。该系统适用于管理生物能量学和光合作用研究中的主要培养变量。通过培养四种具有不同内共生情况的进化距离较远的微藻物种来测试其性能:莱茵衣藻(古质体门,绿色初级质体)、微小多鞭藻(古质体门,无色质体)、纤细裸藻(双鞭毛虫门,绿色次级质体)和三角褐指藻(不等鞭毛类,红色次级质体)。我们的结果表明,与传统的烧瓶系统相比,生物量产量有所提高。对入射光谱的调制使我们能够观察到纤细裸藻对远红光的适应性,这在副淀粉生产上存在差异,并且在绿光下也显著提高了硅藻物种的最大细胞密度。总之,这些结果证实,对于人工光照的光生物反应器,根据下游目标,光谱的操纵是控制最佳性能的关键参数。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/6dd8/11035454/e3a93d3010ee/12010_2023_4629_Fig6_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/6dd8/11035454/c551b52cb364/12010_2023_4629_Fig1_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/6dd8/11035454/358fa7ee26c2/12010_2023_4629_Fig2_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/6dd8/11035454/2354dbee83ef/12010_2023_4629_Fig3_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/6dd8/11035454/bfa99990a57b/12010_2023_4629_Fig4_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/6dd8/11035454/3818ec48b359/12010_2023_4629_Fig5_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/6dd8/11035454/e3a93d3010ee/12010_2023_4629_Fig6_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/6dd8/11035454/c551b52cb364/12010_2023_4629_Fig1_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/6dd8/11035454/358fa7ee26c2/12010_2023_4629_Fig2_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/6dd8/11035454/2354dbee83ef/12010_2023_4629_Fig3_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/6dd8/11035454/bfa99990a57b/12010_2023_4629_Fig4_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/6dd8/11035454/3818ec48b359/12010_2023_4629_Fig5_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/6dd8/11035454/e3a93d3010ee/12010_2023_4629_Fig6_HTML.jpg

相似文献

[1]
Antares I: a Modular Photobioreactor Suitable for Photosynthesis and Bioenergetics Research.

Appl Biochem Biotechnol. 2024-4

[2]
Outdoor H₂ production in a 50-L tubular photobioreactor by means of a sulfur-deprived culture of the microalga Chlamydomonas reinhardtii.

J Biotechnol. 2011-7-8

[3]
Photosynthetic efficiency of Chlamydomonas reinhardtii in flashing light.

Biotechnol Bioeng. 2011-8-23

[4]
Photobioreactors for microalgal cultures: A Lagrangian model coupling hydrodynamics and kinetics.

Biotechnol Prog. 2015

[5]
Luminescent photobioreactor design for improved algal growth and photosynthetic pigment production through spectral conversion of light.

Bioresour Technol. 2013-5-16

[6]
Recent progress on converting CO into microalgal biomass using suspended photobioreactors.

Bioresour Technol. 2022-11

[7]
CFD and kinetic-based modeling to optimize the sparger design of a large-scale photobioreactor for scaling up of biofuel production.

Biotechnol Bioeng. 2019-5-21

[8]
Comparison of tubular and panel type photobioreactors for biohydrogen production utilizing Chlamydomonas reinhardtii considering mixing time and light intensity.

Bioresour Technol. 2013-11-1

[9]
Starch Production in through Supraoptimal Temperature in a Pilot-Scale Photobioreactor.

Cells. 2021-5-1

[10]
Direct membrane-carbonation photobioreactor producing photoautotrophic biomass via carbon dioxide transfer and nutrient removal.

Bioresour Technol. 2015-12-24

引用本文的文献

[1]
Far-Red Component Enhances Paramylon Production in Photoautotrophic .

Bioengineering (Basel). 2025-7-15

[2]
Applications of the Microalgae and Its Bacterial Consortia in Detoxification and Bioproduction.

Life (Basel). 2024-7-27

本文引用的文献

[1]
The effects of light regime on carbon cycling, nutrient removal, biomass yield, and polyhydroxybutyrate (PHB) production by a constructed photosynthetic consortium.

Bioresour Technol. 2022-11

[2]
The antenna of far-red absorbing cyanobacteria increases both absorption and quantum efficiency of Photosystem II.

Nat Commun. 2022-6-21

[3]
Efficient Green Light Acclimation of the Green Algae Triggering Geranylgeranylated Chlorophylls.

Front Bioeng Biotechnol. 2022-4-28

[4]
Blue-green light is required for a maximized fatty acid unsaturation and pigment concentration in the microalga Acutodesmus obliquus.

Lipids. 2022-7

[5]
Influence of Irradiance and Wavelength on the Antioxidant Activity and Carotenoids Accumulation in sp. Isolated from the Antofagasta Coastal Desert.

Molecules. 2022-4-8

[6]
The Effect of Variable Light Source and Light Intensity on the Growth of Three Algal Species.

Cells. 2022-4-11

[7]
The Electronic Origin of Far-Red-Light-Driven Oxygenic Photosynthesis.

Angew Chem Int Ed Engl. 2022-4-11

[8]
Changes in the growth rate of Chlamydomonas reinhardtii under long-term selection by temperature and salinity: Acclimation vs. evolution.

Sci Total Environ. 2022-5-20

[9]
Trophic state alters the mechanism whereby energetic coupling between photosynthesis and respiration occurs in Euglena gracilis.

New Phytol. 2021-11

[10]
The Cell Division Cycle of Indicates That the Level of Circadian Plasticity to the External Light Regime Changes in Prolonged-Stationary Cultures.

Plants (Basel). 2021-7-19

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

推荐工具

医学文档翻译智能文献检索