Rodríguez-Bolaños Mónica, Vargas-Romero Gloria, Jaguer-García Girian, Aguilar-Gonzalez Zhaida I, Lagos-Romero Verónica, Miranda-Astudillo Héctor V
Departamento de Biología Molecular y Biotecnología, Instituto de Investigaciones Biomédicas, Universidad Nacional Autónoma de México, Mexico City, Mexico.
Appl Biochem Biotechnol. 2024 Apr;196(4):2176-2195. doi: 10.1007/s12010-023-04629-0. Epub 2023 Jul 24.
Oxygenic photosynthesis is responsible for most of the fixation of atmospheric CO. The microalgal community can transport atmospheric carbon into biological cycles in which no additional CO is created. This represents a resource to confront the actual climate change crisis. These organisms have evolved to adapt to several environments and different spectral distribution of light that may strongly influence their metabolism. Therefore, there is a need for development of photobioreactors specialized in addressing spectral optimization. Here, a multi-scale modular photobioreactor made from standard glass materials, ad hoc light circuits, and easily accessible, small commercial devices is described. The system is suitable to manage the principal culture variables of research in bioenergetics and photosynthesis. Its performance was tested by growing four evolutionary-distant microalgal species with different endosymbiotic scenarios: Chlamydomonas reinhardtii (Archaeplastida, green primary plastid), Polytomella parva (Archaeplastida, colorless plastid), Euglena gracilis (Discoba, green secondary plastid), and Phaeodactylum tricornutum (Stramenophiles, red secondary plastid). Our results show an improvement of biomass production, as compared to the traditional flask system. The modulation of the incident light spectra allowed us to observe a far-red adaptation in Euglena gracilis with a difference on paramylon production, and it also significantly increased the maximal cell density of the diatom species under green light. Together, these confirm that for photobioreactors with artificial light, manipulation of the light spectrum is a critical parameter for controlling the optimal performance, depending on the downstream goals.
氧光合作用负责大气中大部分二氧化碳的固定。微藻群落能够将大气中的碳输送到生物循环中,在此过程中不会产生额外的二氧化碳。这是应对当前气候变化危机的一种资源。这些生物已经进化以适应多种环境以及可能强烈影响其新陈代谢的不同光谱分布的光。因此,需要开发专门用于解决光谱优化问题的光生物反应器。在此,描述了一种由标准玻璃材料、特制光电路和易于获取的小型商业设备制成的多尺度模块化光生物反应器。该系统适用于管理生物能量学和光合作用研究中的主要培养变量。通过培养四种具有不同内共生情况的进化距离较远的微藻物种来测试其性能:莱茵衣藻(古质体门,绿色初级质体)、微小多鞭藻(古质体门,无色质体)、纤细裸藻(双鞭毛虫门,绿色次级质体)和三角褐指藻(不等鞭毛类,红色次级质体)。我们的结果表明,与传统的烧瓶系统相比,生物量产量有所提高。对入射光谱的调制使我们能够观察到纤细裸藻对远红光的适应性,这在副淀粉生产上存在差异,并且在绿光下也显著提高了硅藻物种的最大细胞密度。总之,这些结果证实,对于人工光照的光生物反应器,根据下游目标,光谱的操纵是控制最佳性能的关键参数。
Appl Biochem Biotechnol. 2024-4
Biotechnol Bioeng. 2011-8-23
Bioresour Technol. 2022-11
Bioengineering (Basel). 2025-7-15
Front Bioeng Biotechnol. 2022-4-28
Angew Chem Int Ed Engl. 2022-4-11