文献检索文档翻译深度研究
Suppr Zotero 插件Zotero 插件
邀请有礼套餐&价格历史记录

新学期,新优惠

限时优惠:9月1日-9月22日

30天高级会员仅需29元

1天体验卡首发特惠仅需5.99元

了解详情
不再提醒
插件&应用
Suppr Zotero 插件Zotero 插件浏览器插件Mac 客户端Windows 客户端微信小程序
高级版
套餐订阅购买积分包
AI 工具
文献检索文档翻译深度研究
关于我们
关于 Suppr公司介绍联系我们用户协议隐私条款
关注我们

Suppr 超能文献

核心技术专利:CN118964589B侵权必究
粤ICP备2023148730 号-1Suppr @ 2025

远红光驱动产氧光合作用的电子起源。

The Electronic Origin of Far-Red-Light-Driven Oxygenic Photosynthesis.

机构信息

Max-Planck-Institut für Kohlenforschung, Kaiser-Wilhelm-Platz 1, 45470, Mülheim an der Ruhr, Germany.

出版信息

Angew Chem Int Ed Engl. 2022 Apr 11;61(16):e202200356. doi: 10.1002/anie.202200356. Epub 2022 Feb 21.


DOI:10.1002/anie.202200356
PMID:35142017
原文链接:https://pmc.ncbi.nlm.nih.gov/articles/PMC9304563/
Abstract

Photosystem-II uses sunlight to trigger charge separation and catalyze water oxidation. Intrinsic properties of chlorophyll a pigments define a natural "red limit" of photosynthesis at ≈680 nm. Nevertheless, charge separation can be triggered with far-red photons up to 800 nm, without altering the nature of light-harvesting pigments. Here we identify the electronic origin of this remarkable phenomenon using quantum chemical and multiscale simulations on a native Photosystem-II model. We find that the reaction center is preorganized for charge separation in the far-red region by specific chlorophyll-pheophytin pairs, potentially bypassing the light-harvesting apparatus. Charge transfer can occur along two distinct pathways with one and the same pheophytin acceptor (Pheo ). The identity of the donor chlorophyll (Chl or P ) is wavelength-dependent and conformational dynamics broaden the sampling of the far-red region by the two charge-transfer states. The two pathways rationalize spectroscopic observations and underpin designed extensions of the photosynthetically active radiation limit.

摘要

光合作用系统 II 利用阳光引发电荷分离并催化水氧化。叶绿素 a 色素的固有特性将光合作用的自然“红色极限”定义在 ≈680nm。然而,电荷分离可以用远红光光子触发,波长可达 800nm,而不改变光捕获色素的性质。在这里,我们使用量子化学和多尺度模拟方法,对天然光合作用系统 II 模型进行了研究,确定了这一显著现象的电子起源。我们发现,反应中心通过特定的叶绿素-原叶绿素对在远红区预先组织了电荷分离,可能绕过了光捕获装置。电荷转移可以沿着两条具有相同原叶绿素受体(Pheo)的不同途径发生。供体叶绿素(Chl 或 P)的身份取决于波长,构象动力学通过两种电荷转移态拓宽了远红区的采样。这两种途径解释了光谱观察,并为光合作用有效辐射极限的设计扩展提供了依据。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/acba/9304563/8e1794d7dc6a/ANIE-61-0-g002.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/acba/9304563/3b28bb49e784/ANIE-61-0-g003.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/acba/9304563/8e1794d7dc6a/ANIE-61-0-g002.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/acba/9304563/3b28bb49e784/ANIE-61-0-g003.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/acba/9304563/8e1794d7dc6a/ANIE-61-0-g002.jpg

相似文献

[1]
The Electronic Origin of Far-Red-Light-Driven Oxygenic Photosynthesis.

Angew Chem Int Ed Engl. 2022-4-11

[2]
Reaction Center Excitation in Photosystem II: From Multiscale Modeling to Functional Principles.

Acc Chem Res. 2023-11-7

[3]
Photochemistry beyond the red limit in chlorophyll f-containing photosystems.

Science. 2018-6-15

[4]
Protein Matrix Control of Reaction Center Excitation in Photosystem II.

J Am Chem Soc. 2020-10-21

[5]
Two-Dimensional Electronic Spectroscopy of the Far-Red-Light Photosystem II Reaction Center.

J Phys Chem Lett. 2023-11-16

[6]
The initial charge separation step in oxygenic photosynthesis.

Nat Commun. 2022-4-27

[7]
Femtosecond visible transient absorption spectroscopy of chlorophyll--containing photosystem II.

Proc Natl Acad Sci U S A. 2020-8-31

[8]
New insights on Chl function in Photosystem II from site-directed mutants of D1/T179 in Thermosynechococcus elongatus.

Biochim Biophys Acta Bioenerg. 2019-4-1

[9]
A TDDFT investigation of the Photosystem II reaction center: Insights into the precursors to charge separation.

Proc Natl Acad Sci U S A. 2020-8-3

[10]
Pathways and timescales of primary charge separation in the photosystem II reaction center as revealed by a simultaneous fit of time-resolved fluorescence and transient absorption.

Biophys J. 2005-9

引用本文的文献

[1]
Improving the Efficiency of Electrostatic Embedding Using the Fast Multipole Method.

J Comput Chem. 2025-1-5

[2]
Combined Multireference-Multiscale Approach to the Description of Photosynthetic Reaction Centers.

J Chem Theory Comput. 2024-8-8

[3]
Excitation landscape of the CP43 photosynthetic antenna complex from multiscale simulations.

Chem Sci. 2024-4-9

[4]
Reaction Center Excitation in Photosystem II: From Multiscale Modeling to Functional Principles.

Acc Chem Res. 2023-11-7

[5]
Triplet states in the reaction center of Photosystem II.

Chem Sci. 2023-8-17

[6]
Antares I: a Modular Photobioreactor Suitable for Photosynthesis and Bioenergetics Research.

Appl Biochem Biotechnol. 2024-4

[7]
Quasiparticle Self-Consistent -Bethe-Salpeter Equation Calculations for Large Chromophoric Systems.

J Chem Theory Comput. 2022-11-8

[8]
Electronic Structure Effects Related to the Origin of the Remarkable Near-Infrared Absorption of ' Light Harvesting 1-Reaction Center Complex.

J Chem Theory Comput. 2022-7-12

[9]
The initial charge separation step in oxygenic photosynthesis.

Nat Commun. 2022-4-27

本文引用的文献

[1]
The origin of unidirectional charge separation in photosynthetic reaction centers: nonadiabatic quantum dynamics of exciton and charge in pigment-protein complexes.

Chem Sci. 2021-5-5

[2]
How Can We Predict Accurate Electrochromic Shifts for Biochromophores? A Case Study on the Photosynthetic Reaction Center.

J Chem Theory Comput. 2021-3-9

[3]
Protein Matrix Control of Reaction Center Excitation in Photosystem II.

J Am Chem Soc. 2020-10-21

[4]
Substituting Far-Red for Traditionally Defined Photosynthetic Photons Results in Equal Canopy Quantum Yield for CO Fixation and Increased Photon Capture During Long-Term Studies: Implications for Re-Defining PAR.

Front Plant Sci. 2020-9-11

[5]
Light harvesting in oxygenic photosynthesis: Structural biology meets spectroscopy.

Science. 2020-8-21

[6]
Far-red absorption and light-use efficiency trade-offs in chlorophyll f photosynthesis.

Nat Plants. 2020-8

[7]
Acquirement of water-splitting ability and alteration of the charge-separation mechanism in photosynthetic reaction centers.

Proc Natl Acad Sci U S A. 2020-6-29

[8]
Far-red photons have equivalent efficiency to traditional photosynthetic photons: Implications for redefining photosynthetically active radiation.

Plant Cell Environ. 2020-5

[9]
Photochemistry beyond the red limit in chlorophyll f-containing photosystems.

Science. 2018-6-15

[10]
The wavelength of the incident light determines the primary charge separation pathway in Photosystem II.

Sci Rep. 2018-2-12

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

推荐工具

医学文档翻译智能文献检索