Suppr超能文献

远红光驱动产氧光合作用的电子起源。

The Electronic Origin of Far-Red-Light-Driven Oxygenic Photosynthesis.

机构信息

Max-Planck-Institut für Kohlenforschung, Kaiser-Wilhelm-Platz 1, 45470, Mülheim an der Ruhr, Germany.

出版信息

Angew Chem Int Ed Engl. 2022 Apr 11;61(16):e202200356. doi: 10.1002/anie.202200356. Epub 2022 Feb 21.

Abstract

Photosystem-II uses sunlight to trigger charge separation and catalyze water oxidation. Intrinsic properties of chlorophyll a pigments define a natural "red limit" of photosynthesis at ≈680 nm. Nevertheless, charge separation can be triggered with far-red photons up to 800 nm, without altering the nature of light-harvesting pigments. Here we identify the electronic origin of this remarkable phenomenon using quantum chemical and multiscale simulations on a native Photosystem-II model. We find that the reaction center is preorganized for charge separation in the far-red region by specific chlorophyll-pheophytin pairs, potentially bypassing the light-harvesting apparatus. Charge transfer can occur along two distinct pathways with one and the same pheophytin acceptor (Pheo ). The identity of the donor chlorophyll (Chl or P ) is wavelength-dependent and conformational dynamics broaden the sampling of the far-red region by the two charge-transfer states. The two pathways rationalize spectroscopic observations and underpin designed extensions of the photosynthetically active radiation limit.

摘要

光合作用系统 II 利用阳光引发电荷分离并催化水氧化。叶绿素 a 色素的固有特性将光合作用的自然“红色极限”定义在 ≈680nm。然而,电荷分离可以用远红光光子触发,波长可达 800nm,而不改变光捕获色素的性质。在这里,我们使用量子化学和多尺度模拟方法,对天然光合作用系统 II 模型进行了研究,确定了这一显著现象的电子起源。我们发现,反应中心通过特定的叶绿素-原叶绿素对在远红区预先组织了电荷分离,可能绕过了光捕获装置。电荷转移可以沿着两条具有相同原叶绿素受体(Pheo)的不同途径发生。供体叶绿素(Chl 或 P)的身份取决于波长,构象动力学通过两种电荷转移态拓宽了远红区的采样。这两种途径解释了光谱观察,并为光合作用有效辐射极限的设计扩展提供了依据。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/acba/9304563/3b28bb49e784/ANIE-61-0-g003.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验