Li Lingjie, Li Yongfeng, Lin Qiuzhen, Liu Songbai, Zhou Junwei, Ming Zhong, Coello Coello Carlos A
IEEE Trans Cybern. 2024 Jun;54(6):3502-3515. doi: 10.1109/TCYB.2023.3287596. Epub 2024 May 30.
The competitive swarm optimizer (CSO) classifies swarm particles into loser and winner particles and then uses the winner particles to efficiently guide the search of the loser particles. This approach has very promising performance in solving large-scale multiobjective optimization problems (LMOPs). However, most studies of CSOs ignore the evolution of the winner particles, although their quality is very important for the final optimization performance. Aiming to fill this research gap, this article proposes a new neural net-enhanced CSO for solving LMOPs, called NN-CSO, which not only guides the loser particles via the original CSO strategy, but also applies our trained neural network (NN) model to evolve winner particles. First, the swarm particles are classified into winner and loser particles by the pairwise competition. Then, the loser particles and winner particles are, respectively, treated as the input and desired output to train the NN model, which tries to learn promising evolutionary dynamics by driving the loser particles toward the winners. Finally, when model training is complete, the winner particles are evolved by the well-trained NN model, while the loser particles are still guided by the winner particles to maintain the search pattern of CSOs. To evaluate the performance of our designed NN-CSO, several LMOPs with up to ten objectives and 1000 decision variables are adopted, and the experimental results show that our designed NN model can significantly improve the performance of CSOs and shows some advantages over several state-of-the-art large-scale multiobjective evolutionary algorithms as well as over model-based evolutionary algorithms.
竞争群体优化器(CSO)将群体粒子分为失败者粒子和胜利者粒子,然后利用胜利者粒子有效地引导失败者粒子进行搜索。这种方法在解决大规模多目标优化问题(LMOP)方面具有非常可观的性能。然而,大多数关于CSO的研究都忽略了胜利者粒子的进化,尽管它们的质量对最终的优化性能非常重要。为了填补这一研究空白,本文提出了一种用于解决LMOP的新型神经网络增强CSO,称为NN-CSO,它不仅通过原始的CSO策略引导失败者粒子,还应用我们训练的神经网络(NN)模型来进化胜利者粒子。首先,通过两两竞争将群体粒子分为胜利者粒子和失败者粒子。然后,将失败者粒子和胜利者粒子分别作为输入和期望输出,来训练NN模型,该模型试图通过驱使失败者粒子向胜利者粒子靠近来学习有前景的进化动态。最后,当模型训练完成时,胜利者粒子由训练良好的NN模型进化,而失败者粒子仍由胜利者粒子引导,以保持CSO的搜索模式。为了评估我们设计的NN-CSO的性能,采用了几个具有多达十个目标和1000个决策变量的LMOP,实验结果表明,我们设计的NN模型可以显著提高CSO的性能,并且相对于几种先进的大规模多目标进化算法以及基于模型的进化算法具有一些优势。