Suppr超能文献

使用四维扫描透射电子显微镜(4D-STEM)绘制石墨烯位错核心周围的纳米级静电场波动图。

Mapping Nanoscale Electrostatic Field Fluctuations around Graphene Dislocation Cores Using Four-Dimensional Scanning Transmission Electron Microscopy (4D-STEM).

作者信息

Coupin Matthew J, Wen Yi, Lee Sungwoo, Saxena Anshul, Ophus Colin, Allen Christopher S, Kirkland Angus I, Aluru Narayana R, Lee Gun-Do, Warner Jamie H

机构信息

Materials Science and Engineering Program, Texas Materials Institute, The University of Texas at Austin, Austin, Texas 78712, United States.

Department of Materials, University of Oxford, Parks Road, Oxford OX1 3PH, United Kingdom.

出版信息

Nano Lett. 2023 Aug 9;23(15):6807-6814. doi: 10.1021/acs.nanolett.3c00328. Epub 2023 Jul 24.

Abstract

Defects in crystalline lattices cause modulation of the atomic density, and this leads to variations in the associated electrostatics at the nanoscale. Mapping these spatially varying charge fluctuations using transmission electron microscopy has typically been challenging due to complicated contrast transfer inherent to conventional phase contrast imaging. To overcome this, we used four-dimensional scanning transmission electron microscopy (4D-STEM) to measure electrostatic fields near point dislocations in a monolayer. The asymmetry of the atomic density in a (1,0) edge dislocation core in graphene yields a local enhancement of the electric field in part of the dislocation core. Through experiment and simulation, the increased electric field magnitude is shown to arise from "long-range" interactions from beyond the nearest atomic neighbor. These results provide insights into the use of 4D-STEM to quantify electrostatics in thin materials and map out the lateral potential variations that are important for molecular and atomic bonding through Coulombic interactions.

摘要

晶格缺陷会导致原子密度的调制,这会在纳米尺度上引起相关静电的变化。由于传统相衬成像固有的复杂对比度传递,使用透射电子显微镜对这些空间变化的电荷涨落进行映射通常具有挑战性。为了克服这一问题,我们使用四维扫描透射电子显微镜(4D-STEM)来测量单层中靠近点缺陷处的静电场。石墨烯中(1,0)边缘位错核心处原子密度的不对称性会导致位错核心部分电场的局部增强。通过实验和模拟表明,电场强度的增加源于最近邻原子之外的“长程”相互作用。这些结果为利用4D-STEM量化薄材料中的静电以及绘制横向电位变化提供了见解,这些横向电位变化通过库仑相互作用对分子和原子键合很重要。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验