Suppr超能文献

双通道 MIRECL 便携式设备与阻抗效应耦合智能手机和机器学习系统,用于酪胺的识别和定量。

Dual-channel MIRECL portable devices with impedance effect coupled smartphone and machine learning system for tyramine identification and quantification.

机构信息

College of Science, Sichuan Agricultural University, Xin Kang Road, Yucheng District, Ya'an 625014, PR China.

School of Chemistry and Chemical Engineering, South China University of Technology, Guangzhou 510641, PR China.

出版信息

Food Chem. 2023 Dec 15;429:136920. doi: 10.1016/j.foodchem.2023.136920. Epub 2023 Jul 20.

Abstract

We designed a novel, portable, and visual dual-potential molecularly imprinted ratiometric electrochemiluminescence (MIRECL) sensor for tyramine (TYM) detection based on smartphone and deep learning-assisted optical devices. Molecularly imprinted polymer-CeSnO (MIP-CeSnO) layers were fabricated by in-situ electropolymerization method as the capture and signal amplification probe. Oxygen vacancies in CeSnO not only enhance the electrochemical redox capability but also accelerate the energy transfer, thereby enhancing the luminescence of cathode ECL. Under optimal conditions, the ECL signals of MIP-CeSnO at the cathode and the anode response of Ru(bpy) was reduced, thus a wide linear range from 0.01 μM to 1000 μM with the detection limit as low as 0.005 μM. Interestingly, combined with an artificial intelligence image recognition algorithm and the principle of optical signal reading by smartphone, the developed MIRECL sensor has been applied to the portable and visual determination of TYM in aquatic samples, and its practicability has been satisfactorily verified.

摘要

我们设计了一种基于智能手机和深度学习辅助光学器件的新型、便携、可视化的双电位分子印迹比率电化学发光(MIRECL)传感器,用于检测酪胺(TYM)。分子印迹聚合物-氧化铈锡(MIP-CeSnO)层通过原位电聚合方法制备,用作捕获和信号放大探针。CeSnO 中的氧空位不仅增强了电化学氧化还原能力,而且加速了能量转移,从而增强了阴极 ECL 的发光。在最佳条件下,阴极上的 MIP-CeSnO 的 ECL 信号和 Ru(bpy)的阳极响应被降低,从而实现了从 0.01 μM 到 1000 μM 的宽线性范围,检测限低至 0.005 μM。有趣的是,结合人工智能图像识别算法和智能手机光学信号读取原理,开发的 MIRECL 传感器已应用于水样品中 TYM 的便携和可视化测定,其实用性得到了令人满意的验证。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验