Suppr超能文献

医学文本的少样本学习:进展、趋势和机遇综述。

Few-shot learning for medical text: A review of advances, trends, and opportunities.

机构信息

Department of Biomedical Informatics, School of Medicine, Emory University, Atlanta, GA, United States of America.

Department of Biomedical Informatics, Vanderbilt University Medical Center, Vanderbilt University, Nashville, TN, United States of America.

出版信息

J Biomed Inform. 2023 Aug;144:104458. doi: 10.1016/j.jbi.2023.104458. Epub 2023 Jul 23.

Abstract

BACKGROUND

Few-shot learning (FSL) is a class of machine learning methods that require small numbers of labeled instances for training. With many medical topics having limited annotated text-based data in practical settings, FSL-based natural language processing (NLP) holds substantial promise. We aimed to conduct a review to explore the current state of FSL methods for medical NLP.

METHODS

We searched for articles published between January 2016 and October 2022 using PubMed/Medline, Embase, ACL Anthology, and IEEE Xplore Digital Library. We also searched the preprint servers (e.g., arXiv, medRxiv, and bioRxiv) via Google Scholar to identify the latest relevant methods. We included all articles that involved FSL and any form of medical text. We abstracted articles based on the data source, target task, training set size, primary method(s)/approach(es), and evaluation metric(s).

RESULTS

Fifty-one articles met our inclusion criteria-all published after 2018, and most since 2020 (42/51; 82%). Concept extraction/named entity recognition was the most frequently addressed task (21/51; 41%), followed by text classification (16/51; 31%). Thirty-two (61%) articles reconstructed existing datasets to fit few-shot scenarios, and MIMIC-III was the most frequently used dataset (10/51; 20%). 77% of the articles attempted to incorporate prior knowledge to augment the small datasets available for training. Common methods included FSL with attention mechanisms (20/51; 39%), prototypical networks (11/51; 22%), meta-learning (7/51; 14%), and prompt-based learning methods, the latter being particularly popular since 2021. Benchmarking experiments demonstrated relative underperformance of FSL methods on biomedical NLP tasks.

CONCLUSION

Despite the potential for FSL in biomedical NLP, progress has been limited. This may be attributed to the rarity of specialized data, lack of standardized evaluation criteria, and the underperformance of FSL methods on biomedical topics. The creation of publicly-available specialized datasets for biomedical FSL may aid method development by facilitating comparative analyses.

摘要

背景

小样本学习(FSL)是一类机器学习方法,仅需少量有标签的实例进行训练。在实际情况下,许多医学主题的基于文本的注释数据有限,因此基于 FSL 的自然语言处理(NLP)具有很大的潜力。我们旨在进行一项综述,以探索医学 NLP 中 FSL 方法的现状。

方法

我们使用 PubMed/Medline、Embase、ACL 文集和 IEEE Xplore 数字图书馆,搜索了 2016 年 1 月至 2022 年 10 月期间发表的文章。我们还通过 Google Scholar 搜索预印本服务器(例如 arXiv、medRxiv 和 bioRxiv),以确定最新的相关方法。我们纳入了所有涉及 FSL 和任何形式的医学文本的文章。我们根据数据源、目标任务、训练集大小、主要方法/方法和评估指标来摘要文章。

结果

符合纳入标准的文章有 51 篇-均发表于 2018 年以后,其中大多数(42/51;82%)发表于 2020 年以后。概念提取/命名实体识别是最常被研究的任务(21/51;41%),其次是文本分类(16/51;31%)。32 篇(61%)文章重建了现有的数据集以适应小样本场景,其中 MIMIC-III 是最常被使用的数据集(10/51;20%)。77%的文章试图利用先验知识来扩充用于训练的小数据集。常见的方法包括具有注意力机制的 FSL(20/51;39%)、原型网络(11/51;22%)、元学习(7/51;14%)和基于提示的学习方法,后者自 2021 年以来特别流行。基准实验表明,FSL 方法在生物医学 NLP 任务中的表现相对较差。

结论

尽管 FSL 在生物医学 NLP 中有潜力,但进展有限。这可能归因于特殊数据的稀有性、缺乏标准化的评估标准以及 FSL 方法在生物医学主题上的表现不佳。为生物医学 FSL 创建公共可用的特殊数据集可能有助于方法开发,促进比较分析。

相似文献

1
Few-shot learning for medical text: A review of advances, trends, and opportunities.
J Biomed Inform. 2023 Aug;144:104458. doi: 10.1016/j.jbi.2023.104458. Epub 2023 Jul 23.
2
A comparison of few-shot and traditional named entity recognition models for medical text.
Proc (IEEE Int Conf Healthc Inform). 2022 Jun;2022:84-89. doi: 10.1109/ichi54592.2022.00024. Epub 2022 Sep 8.
3
Data Augmentation with Nearest Neighbor Classifier for Few-Shot Named Entity Recognition.
Stud Health Technol Inform. 2024 Jan 25;310:690-694. doi: 10.3233/SHTI231053.
5
Extracting adverse drug events from clinical Notes: A systematic review of approaches used.
J Biomed Inform. 2024 Mar;151:104603. doi: 10.1016/j.jbi.2024.104603. Epub 2024 Feb 6.
6
A comparison of word embeddings for the biomedical natural language processing.
J Biomed Inform. 2018 Nov;87:12-20. doi: 10.1016/j.jbi.2018.09.008. Epub 2018 Sep 12.
8
Deep learning in clinical natural language processing: a methodical review.
J Am Med Inform Assoc. 2020 Mar 1;27(3):457-470. doi: 10.1093/jamia/ocz200.

引用本文的文献

2
Scoring Physician Risk Communication in Prostate Cancer Using Large Language Models.
medRxiv. 2025 Aug 11:2025.08.07.25333034. doi: 10.1101/2025.08.07.25333034.
3
Exploration of 3D Few-Shot Learning Techniques for Classification of Knee Joint Injuries on MR Images.
Diagnostics (Basel). 2025 Jul 18;15(14):1808. doi: 10.3390/diagnostics15141808.
8
A simplified retriever to improve accuracy of phenotype normalizations by large language models.
Front Digit Health. 2025 Mar 4;7:1495040. doi: 10.3389/fdgth.2025.1495040. eCollection 2025.
10
NLP modeling recommendations for restricted data availability in clinical settings.
BMC Med Inform Decis Mak. 2025 Mar 7;25(1):116. doi: 10.1186/s12911-025-02948-2.

本文引用的文献

1
A comparison of few-shot and traditional named entity recognition models for medical text.
Proc (IEEE Int Conf Healthc Inform). 2022 Jun;2022:84-89. doi: 10.1109/ichi54592.2022.00024. Epub 2022 Sep 8.
2
Trustworthy assertion classification through prompting.
J Biomed Inform. 2022 Aug;132:104139. doi: 10.1016/j.jbi.2022.104139. Epub 2022 Jul 8.
3
5
A novel few-shot learning based multi-modality fusion model for COVID-19 rumor detection from online social media.
PeerJ Comput Sci. 2021 Aug 20;7:e688. doi: 10.7717/peerj-cs.688. eCollection 2021.
6
Adaptive Prototypical Networks With Label Words and Joint Representation Learning for Few-Shot Relation Classification.
IEEE Trans Neural Netw Learn Syst. 2023 Mar;34(3):1406-1417. doi: 10.1109/TNNLS.2021.3105377. Epub 2023 Feb 28.
7
Med7: A transferable clinical natural language processing model for electronic health records.
Artif Intell Med. 2021 Aug;118:102086. doi: 10.1016/j.artmed.2021.102086. Epub 2021 May 18.
9
10
Meta-Learning in Neural Networks: A Survey.
IEEE Trans Pattern Anal Mach Intell. 2022 Sep;44(9):5149-5169. doi: 10.1109/TPAMI.2021.3079209. Epub 2022 Aug 4.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验