Suppr超能文献

一种用于预测高血压患者原发性醛固酮增多症的新型临床影像列线图。

A novel clinical-imaging nomogram for predicting primary aldosteronism in patients with hypertension.

机构信息

Department of Endocrinology and Metabolism, the First Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu, China.

出版信息

Hypertens Res. 2023 Dec;46(12):2603-2612. doi: 10.1038/s41440-023-01374-z. Epub 2023 Jul 24.

Abstract

This study aimed to develop and validate the accuracy of a clinical-imaging index nomogram in predicting primary aldosteronism (PA) in patients with hypertension. This case-control study enrolled 404 hypertension patients in the First Affiliated Hospital of Nanjing Medical University, China, from April 2017 to September 2021. The patients were randomly divided into the training set (n = 283, 70%) and the validation set (n = 121, 30%). Univariate and multivariate logistic regression analyses were performed to identify independent predictors of PA, which were then used construct a nomogram. The receiver operating characteristic (ROC) curve and calibration plot were drawn to assess the predictive value. The accuracies of our nomogram and other known prediction models were compared using decision curve analyses (DCA). Four significant variables (history of hypokalemia [OR = 2.684, 95% CI: 1.281-5.623, P < 0.001], typical imaging feature [OR = 2.316, 95% CI: 1.166-4.601, P = 0.003], 24 h urine potassium [OR = 0.956, 95% CI: 0.932-0.980, P < 0.001], plasma renin activity [PRA] [OR = 1.423, 95% CI: 1.161-1.744, P < 0.001]) in the multivariate logistic regression analysis were sifted out, and used to build the nomogram. The predictive nomogram yielded an AUC of 0.890 (95% CI, 0.853-0.927) in the training set and 0.860 (95% CI, 0.793-0.927) in the validation set. Predicted and actual probability of PA matched well in the nomogram. Moreover, the DCA showed that the nomogram gained a net benefit in clinical practice in predicting PA when the threshold value was set between 0.1 and 1.0. Our four-variable nomogram was accurate in predicting PA patients and might be introduced into clinical management.

摘要

本研究旨在开发和验证一种临床影像指数列线图在预测高血压患者原发性醛固酮增多症(PA)中的准确性。这项病例对照研究纳入了 2017 年 4 月至 2021 年 9 月在中国南京医科大学第一附属医院就诊的 404 名高血压患者。患者被随机分为训练集(n=283,70%)和验证集(n=121,30%)。进行单变量和多变量逻辑回归分析以确定 PA 的独立预测因素,然后使用这些因素构建列线图。绘制受试者工作特征(ROC)曲线和校准图以评估预测价值。使用决策曲线分析(DCA)比较我们的列线图和其他已知预测模型的准确性。四个显著变量(低钾血症史[OR=2.684,95%CI:1.281-5.623,P<0.001]、典型影像学特征[OR=2.316,95%CI:1.166-4.601,P=0.003]、24 小时尿钾[OR=0.956,95%CI:0.932-0.980,P<0.001]和血浆肾素活性[PRA][OR=1.423,95%CI:1.161-1.744,P<0.001])在多变量逻辑回归分析中被筛选出来,并用于构建列线图。该预测列线图在训练集中的 AUC 为 0.890(95%CI,0.853-0.927),在验证集中为 0.860(95%CI,0.793-0.927)。列线图中预测和实际的 PA 概率匹配良好。此外,DCA 表明,当阈值设定在 0.1 到 1.0 之间时,该列线图在预测 PA 方面具有临床实践净获益。我们的四变量列线图在预测 PA 患者方面具有准确性,可能被引入临床管理。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验