Department of Molecular, Cellular, and Developmental Biology, The University of Michigan, Ann Arbor, MI, USA.
Nat Struct Mol Biol. 2023 Sep;30(9):1260-1264. doi: 10.1038/s41594-023-01048-x. Epub 2023 Jul 24.
Control of insulin mRNA translation is crucial for energy homeostasis, but the mechanisms remain largely unknown. We discovered that insulin mRNAs across invertebrates, vertebrates and mammals feature the modified base N-methyladenosine (mA). In flies, this RNA modification enhances insulin mRNA translation by promoting the association of the transcript with polysomes. Depleting mA in Drosophila melanogaster insulin 2 mRNA (dilp2) directly through specific 3' untranslated region (UTR) mutations, or indirectly by mutating the mA writer Mettl3, decreases dilp2 protein production, leading to aberrant energy homeostasis and diabetic-like phenotypes. Together, our findings reveal adenosine mRNA methylation as a key regulator of insulin protein synthesis with notable implications for energy balance and metabolic disease.
胰岛素 mRNA 翻译的控制对能量平衡至关重要,但其中的机制在很大程度上仍是未知的。我们发现,无脊椎动物、脊椎动物和哺乳动物的胰岛素 mRNA 都具有修饰碱基 N6-甲基腺苷(m6A)。在果蝇中,这种 RNA 修饰通过促进转录本与多核糖体的结合来增强胰岛素 mRNA 的翻译。通过特异性 3' 非翻译区(UTR)突变直接耗尽果蝇胰岛素 2 信使 RNA(dilp2)中的 m6A,或通过突变 m6A 写入器 Mettl3 间接耗尽 m6A,会降低 dilp2 蛋白的产生,导致能量平衡异常和类似糖尿病的表型。总之,我们的发现揭示了腺苷 mRNA 甲基化是胰岛素蛋白合成的关键调节剂,对能量平衡和代谢疾病具有重要意义。