Suppr超能文献

超亲水光热纳米胶囊的高效大气水收集

Efficient Atmospheric Water Harvesting of Superhydrophilic Photothermic Nanocapsule.

作者信息

Han Xuefeng, Zhong Lieshuang, Zhang Lei, Zhu Lingmei, Zhou Maolin, Wang Shaomin, Yu Dongdong, Chen Huan, Hou Yongping, Zheng Yongmei

机构信息

Key Laboratory of Bio-Inspired Smart Interfacial Science and Technology of Ministry of Education School of Chemistry, Beihang University (BUAA), Beijing, 100191, P. R. China.

出版信息

Small. 2023 Nov;19(47):e2303358. doi: 10.1002/smll.202303358. Epub 2023 Jul 24.

Abstract

Drought and water scarcity are two of the world's major problems. Solar-powered sorption-based atmospheric water harvesting technology is a promising solution in this category. The main challenge is to design materials with high water harvesting performance while achieving fast water vapor adsorption/desorption rates. Here, a superhydrophilic photothermic hollow nanocapsule (SPHN) is represented that achieves efficient atmospheric water harvesting in outdoor climates. In SPHN, the hollow mesoporous silica (HMS) is grafted with polypyrrole (PPy) and also loaded with lithium chloride (LiCl). The hollow structure is used to store water while preventing leakage. The hydrophilic spherical nanocapsule and the trapped water produce more free and weakly adsorbed water. Significantly lower the heat of desorption compared to pure LiCl solution. Such SPHN significantly improves the adsorption/desorption kinetics, e.g., absorbs 0.78-2.01 g of water per gram of SPHN at 25 °C, relative humidity (RH) 30-80% within 3 h. In particular, SPHN has excellent photothermal properties to achieve rapid water release under natural sunlight conditions, i.e., 80-90% of water is released in 1 h at 0.7-1.0 kW m solar irradiation, and 50% of water is released even at solar irradiation as low as 0.4 kW m . The water collection capacity can reach 1.2 g g per cycle by using the self-made atmospheric water harvesting (AWH) device. This finding provides a way to design novel materials for efficient water harvesting tasks, e.g., water engineering, freshwater generator, etc.

摘要

干旱和水资源短缺是世界上的两大主要问题。基于太阳能吸附的大气取水技术是这类问题中一个很有前景的解决方案。主要挑战在于设计出具有高取水性能且能实现快速水蒸气吸附/解吸速率的材料。在此,展示了一种超亲水光热空心纳米胶囊(SPHN),其能在户外气候条件下实现高效的大气取水。在SPHN中,中空介孔二氧化硅(HMS)接枝了聚吡咯(PPy)并且还负载了氯化锂(LiCl)。中空结构用于储存水同时防止泄漏。亲水性球形纳米胶囊和所捕获的水产生了更多自由且弱吸附的水。与纯LiCl溶液相比,解吸热显著降低。这种SPHN显著改善了吸附/解吸动力学,例如,在25℃、相对湿度(RH)30 - 80%的条件下,每克SPHN在3小时内可吸收0.78 - 2.01克水。特别地,SPHN具有优异的光热性能,能在自然阳光条件下实现快速水释放,即在0.7 - 1.0千瓦·米的太阳辐照下,1小时内可释放80 - 90%的水,甚至在低至0.4千瓦·米的太阳辐照下也能释放50%的水。通过使用自制的大气取水(AWH)装置,每个循环的集水能力可达1.2克/克。这一发现为设计用于高效取水任务的新型材料提供了一种途径,例如水利工程、淡水发生器等。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验