Li Jiyan, Xing Guoyu, Qiao Min, Liu Zihao, Sun Hanxue, Jiao Rui, Li Lingxiao, Zhang Junping, Li An
College of Petrochemical Technology, Lanzhou University of Technology, Lanzhou, Gansu 730050, P. R. China.
Center of Eco-material and Green Chemistry, Lanzhou Institute of Chemical Physics, Chinese Academy of Sciences, Lanzhou, Gansu 730000, P. R. China.
Langmuir. 2023 Dec 12;39(49):18161-18170. doi: 10.1021/acs.langmuir.3c03229. Epub 2023 Nov 28.
Solar-driven atmospheric water harvesting technology has the advantage of not being limited by geography and has great potential in solving the freshwater crisis. Here, we first propose a purely natural and degradable superhydrophilic composite macroporous hygroscopic material by applying guar gum (GG) to atmospheric water harvesting. The material consists of GG-cellulose nanofibers (CNFs) as a porous substrate material, limiting the hygroscopic factor lithium chloride (LiCl) in its three-dimensional (3D) network structure, and carbon nanotubes (CNTs) play a photothermal conversion role. The composite material has a high light absorption rate of more than 95%, and the macroporous structure (20-60 μm) allows for rapid adsorption/desorption kinetics. At 35 °C and 90% relative humidity (RH), the moisture absorption capacity is as high as 1.94 g/g. Under 100 mW/cm irradiation, the absorbed water is almost completely desorbed within 3 h, and the water harvesting performance is stable in 10 cycles. Moreover, liquid water was successfully collected in an actual outdoor experiment. This work demonstrates the great potential of biomass materials in the field of atmospheric water collection and provides more opportunities for various energy and sustainable applications in the future.
太阳能驱动的大气取水技术具有不受地理限制的优势,在解决淡水危机方面具有巨大潜力。在此,我们首次通过将瓜尔胶(GG)应用于大气取水,提出了一种纯天然且可降解的超亲水性复合大孔吸湿材料。该材料由作为多孔基材的GG-纤维素纳米纤维(CNFs)组成,在其三维(3D)网络结构中限制吸湿因子氯化锂(LiCl),并且碳纳米管(CNTs)起到光热转换作用。该复合材料具有超过95%的高光吸收率,大孔结构(20 - 60μm)允许快速的吸附/解吸动力学。在35°C和90%相对湿度(RH)下,吸湿能力高达1.94 g/g。在100 mW/cm的光照下,吸收的水在3小时内几乎完全解吸,并且在10个循环中取水性能稳定。此外,在实际户外实验中成功收集到了液态水。这项工作展示了生物质材料在大气集水领域的巨大潜力,并为未来各种能源和可持续应用提供了更多机会。