Suppr超能文献

由嵌入氮和硫双掺杂碳中的三元锡基二硫属化物组成的3D纳米花实现的高性能钠离子电池。

High-Performance Sodium-Ion Batteries Enabled by 3D Nanoflowers Comprised of Ternary Sn-Based Dichalcogenides Embedded in Nitrogen and Sulfur Dual-Doped Carbon.

作者信息

Zheng Yayun, Wei Shasha, Shang Jitao, Wang Du, Lei Cheng, Zhao Yan

机构信息

The Institute of Technological Sciences, Wuhan University, Wuhan, 430072, People's Republic of China.

出版信息

Small. 2023 Nov;19(47):e2303746. doi: 10.1002/smll.202303746. Epub 2023 Jul 24.

Abstract

To make sodium-ion batteries a realistic option for everyday energy storage, a practicable method is to enhance the kinetics of Na reactions through the development of structurally stable electrode materials. This study utilizes ternary Sn-based dichalcogenide (SnS Se ) in the design of electrode material to tackle several issues that adversely hinder the performance and longevity of sodium-ion batteries. First, the incorporation of Se into the SnS structure enhances its electrical conductivity and stability. Second, the ternary composition restricts the formation of intermediates during the desodiation/sodiation process, resulting in better electrode reaction reversibility. Finally, SnS Se lowers the diffusion barrier of Na, thereby facilitating rapid and efficient ion transport within the electrode material. Moreover, nitrogen and sulfur dual-doped carbon (NS-C) is used to enhance surface chemistry and ionic/electrical conductivity of SnS Se , leading to a pseudocapacitive storage effect that presents a promising potential for high-performance energy storage devices. The study has successfully developed a SnS Se /NS-C anode, exhibiting remarkable rate capability and cycle stability, retaining a capacity of 647 mAh g even after 10 000 cycles at 5 A g in half-cell tests. In full-cell tests, Na V (PO ) //SnS Se /NS-C delivers a high energy density of 176.6 Wh kg . In addition, the Na storage mechanism of SnS Se /NS-C is explored through ex situ tests and DFT calculations. The findings suggest that the ternary Sn-based dichalcogenides can considerably enhance the performance of the anode, enabling efficient large-scale storage of sodium. These findings hold great promise for the advancement of high-performance energy storage devices for practical applications.

摘要

为了使钠离子电池成为日常储能的现实选择,一种可行的方法是通过开发结构稳定的电极材料来增强钠反应的动力学。本研究利用三元锡基二硫属化物(SnSSe)设计电极材料,以解决一些对钠离子电池性能和寿命产生不利影响的问题。首先,将硒掺入SnS结构中可提高其电导率和稳定性。其次,三元组成限制了脱钠/嵌钠过程中中间体的形成,从而导致更好的电极反应可逆性。最后,SnSSe降低了钠的扩散势垒,从而促进了电极材料内快速高效的离子传输。此外,氮硫双掺杂碳(NS-C)用于增强SnSSe的表面化学性质以及离子/电子导电性,从而产生赝电容存储效应,这为高性能储能装置展现出了广阔的前景。该研究成功开发出了一种SnSSe/NS-C阳极,其表现出卓越的倍率性能和循环稳定性,在半电池测试中,即使在5 A g的电流密度下循环10000次后仍保持647 mAh g的容量。在全电池测试中,Na3V2(PO4)3//SnSSe/NS-C提供了176.6 Wh kg的高能量密度。此外,通过非原位测试和密度泛函理论(DFT)计算探索了SnSSe/NS-C的储钠机制。研究结果表明,三元锡基二硫属化物可以显著提高阳极性能,实现高效的大规模钠存储。这些发现对于推进高性能储能装置的实际应用具有重要意义。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验