Suppr超能文献

急性心肌梗死后左心室重构的最佳定义和预测列线图。

The optimal definition and prediction nomogram for left ventricular remodelling after acute myocardial infarction.

机构信息

Department of Cardiology, Shengli Clinical Medical College of Fujian Medical University, Fujian Provincial Hospital, Fuzhou, China.

Department of Cardiology, Fuwai Hospital, National Center for Cardiovascular Diseases, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China.

出版信息

ESC Heart Fail. 2023 Oct;10(5):2955-2965. doi: 10.1002/ehf2.14479. Epub 2023 Jul 24.

Abstract

AIMS

Left ventricular (LV) remodelling after acute myocardial infarction (AMI) is associated with heart failure and increased mortality. There was no consensus on the definition of LV remodelling, and the prognostic value of LV remodelling with different definitions has not been compared. We aimed to find the optimal definition and develop a prediction nomogram as well as online calculator that can identify patients at risk of LV remodelling.

METHODS AND RESULTS

This prospective, observational study included 829 AMI patients undergoing percutaneous coronary intervention from January 2015 to January 2020. Echocardiography was performed within the 48 h of admission and at 6 months after infarction to evaluate LV remodelling, defined as a 20% increase in LV end-diastolic volume (LVEDV), a 15% increase in LV end-systolic volume (LVESV), or LV ejection fraction (LVEF) < 50% at 6 months. The impact of LV remodelling on long-term outcomes was analysed. Lasso regression was performed to screen potential predictors, and multivariable logistic regression analysis was conducted to establish the prediction nomogram. The area under the curve, calibration curve and decision curve analyses were used to determine the discrimination, calibration and clinical usefulness of the remodelling nomogram. The incidences of LV remodelling defined by LVEDV, LVESV and LVEF were 24.85% (n = 206), 28.71% (n = 238) and 14.60% (n = 121), respectively. Multivariable Cox regression models demonstrated that different definitions of LV remodelling were independently associated with the composite endpoint. However, only remodelling defined by LVEF was significantly connected with long-term mortality (hazard ratio = 2.78, 95% confidence interval 1.41-5.48, P = 0.003). Seven variables were selected to construct the remodelling nomogram, including diastolic blood pressure, heart rate, AMI type, stent length, N-terminal pro brain natriuretic peptide, troponin I, and glucose. The prediction model had an area under the receiver operating characteristics curve of 0.766. The calibration curve and decision curve analysis indicated consistency and better net benefit in the prediction model.

CONCLUSIONS

LV remodelling defined by LVEDV, LVESV and LVEF were independent predictors for long-term mortality or heart failure hospitalization in AMI patients after percutaneous coronary intervention. However, only remodelling defined by LVEF was suitable for predicting all-cause death. In addition, the nomogram can provide an accurate and effective tool for the prediction of postinfarct remodelling.

摘要

目的

急性心肌梗死(AMI)后左心室(LV)重构与心力衰竭和死亡率增加有关。LV 重构的定义尚无共识,且不同定义的 LV 重构的预后价值尚未比较。我们旨在寻找最佳定义,并开发预测列线图和在线计算器,以识别有 LV 重构风险的患者。

方法和结果

这项前瞻性观察性研究纳入了 2015 年 1 月至 2020 年 1 月接受经皮冠状动脉介入治疗的 829 例 AMI 患者。入院后 48 小时内和梗死后 6 个月行超声心动图检查,以评估 LV 重构,定义为 LV 舒张末期容积(LVEDV)增加 20%、LV 收缩末期容积(LVESV)增加 15%或 LV 射血分数(LVEF)在 6 个月时<50%。分析 LV 重构对长期结局的影响。使用 Lasso 回归筛选潜在预测因子,并进行多变量逻辑回归分析以建立预测列线图。曲线下面积、校准曲线和决策曲线分析用于确定重构列线图的区分度、校准度和临床实用性。LVEDV、LVESV 和 LVEF 定义的 LV 重构发生率分别为 24.85%(n=206)、28.71%(n=238)和 14.60%(n=121)。多变量 Cox 回归模型表明,LV 重构的不同定义与复合终点独立相关。然而,只有 LVEF 定义的重构与长期死亡率显著相关(危险比=2.78,95%置信区间 1.41-5.48,P=0.003)。7 个变量被选入重构列线图,包括舒张压、心率、AMI 类型、支架长度、N 末端脑利钠肽前体、肌钙蛋白 I 和葡萄糖。预测模型的受试者工作特征曲线下面积为 0.766。校准曲线和决策曲线分析表明,该预测模型具有一致性和更好的净获益。

结论

LVEDV、LVESV 和 LVEF 定义的 LV 重构是 AMI 患者经皮冠状动脉介入治疗后长期死亡率或心力衰竭住院的独立预测因子。然而,只有 LVEF 定义的重构适用于预测全因死亡。此外,该列线图可以为梗死后重构的预测提供准确有效的工具。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/3d37/10567660/c1e405c8a84b/EHF2-10-2955-g001.jpg

相似文献

1
The optimal definition and prediction nomogram for left ventricular remodelling after acute myocardial infarction.
ESC Heart Fail. 2023 Oct;10(5):2955-2965. doi: 10.1002/ehf2.14479. Epub 2023 Jul 24.
2
Prognosis-based definition of left ventricular remodeling after ST-elevation myocardial infarction.
Eur Radiol. 2019 May;29(5):2330-2339. doi: 10.1007/s00330-018-5875-3. Epub 2018 Dec 13.
5
Prognostic value of reverse remodelling criteria in heart failure with reduced or mid-range ejection fraction.
ESC Heart Fail. 2021 Aug;8(4):3014-3025. doi: 10.1002/ehf2.13396. Epub 2021 May 18.

引用本文的文献

1
Prognostic impact of changes in left ventricular ejection fraction and wall motion score index in patients with myocardial infarction.
Front Cardiovasc Med. 2025 May 14;12:1530006. doi: 10.3389/fcvm.2025.1530006. eCollection 2025.

本文引用的文献

1
Prognostic value of reverse remodelling criteria in heart failure with reduced or mid-range ejection fraction.
ESC Heart Fail. 2021 Aug;8(4):3014-3025. doi: 10.1002/ehf2.13396. Epub 2021 May 18.
3
Prognostic Value of NT-proBNP versus Killip Classification in Patients with Acute Coronary Syndromes.
Arq Bras Cardiol. 2020 Apr;114(4):666-672. doi: 10.36660/abc.20180345. Epub 2020 Feb 14.
4
Left Ventricular Post-Infarct Remodeling: Implications for Systolic Function Improvement and Outcomes in the Modern Era.
JACC Heart Fail. 2020 Feb;8(2):131-140. doi: 10.1016/j.jchf.2019.08.014. Epub 2019 Dec 11.
7
Left Ventricular Remodelling: A Problem in Search of Solutions.
Eur Cardiol. 2016 Aug;11(1):29-35. doi: 10.15420/ecr.2015:9:3.
8
ST2 as a predictor of late ventricular remodeling after myocardial infarction.
Int J Cardiol. 2018 May 15;259:40-42. doi: 10.1016/j.ijcard.2018.02.058. Epub 2018 Feb 19.
9
Blood pressure and cardiovascular outcomes in patients with diabetes and high cardiovascular risk.
Eur Heart J. 2018 Jun 21;39(24):2255-2262. doi: 10.1093/eurheartj/ehx809.
10
Machine learning in cardiovascular medicine: are we there yet?
Heart. 2018 Jul;104(14):1156-1164. doi: 10.1136/heartjnl-2017-311198. Epub 2018 Jan 19.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验