Suppr超能文献

预测乳房重建中的并发症:机器学习模型的开发和前瞻性验证。

Predicting Complications in Breast Reconstruction: Development and Prospective Validation of a Machine Learning Model.

机构信息

From the Departments of Plastic, Burn, and Wound Surgery.

General Surgery, University of Kansas Medical Center, Kansas City, KS.

出版信息

Ann Plast Surg. 2023 Aug 1;91(2):282-286. doi: 10.1097/SAP.0000000000003621.

Abstract

IMPORTANCE

Necrosis of the nipple-areolar complex (NAC) is the Achilles heel of nipple-sparing mastectomy (NSM), and it can be difficult to assess which patients are at risk of this complication (Ann Surg Oncol 2014;21(1):100-106).

OBJECTIVE

To develop and validate a model that accurately predicts NAC necrosis in a prospective cohort.

DESIGN

Data were collected from a retrospectively reviewed cohort of patients who underwent NSM and immediate breast reconstruction between January 2015 and July 2019 at our institution, a high -volume, tertiary academic center. Preoperative clinical characteristics, operative variables, and postoperative complications were collected and linked to NAC outcomes. These results were utilized to train a random-forest classification model to predict necrosis. Our model was then validated in a prospective cohort of patients undergoing NSM with immediate breast reconstruction between June 2020 and June 2021.

RESULTS

Model predictions of NAC necrosis in the prospective cohort achieved an accuracy of 97% (95% confidence interval [CI], 0.89-0.99; P = 0.009). This was consistent with the accuracy of predictions in the retrospective cohort (0.97; 95% CI, 0.95-0.99). A high degree of specificity (0.98; 95% CI, 0.90-1.0) and negative predictive value (0.98; 95% CI, 0.90-1.0) were also achieved prospectively. Implant weight was the most predictive of increased risk, with weights greater than 400 g most strongly associated with NAC ischemia.

CONCLUSIONS AND RELEVANCE

Our machine learning model prospectively predicted cases of NAC necrosis with a high degree of accuracy. An important predictor was implant weight, a modifiable risk factor that could be adjusted to mitigate the risk of NAC necrosis and associated postoperative complications.

摘要

重要性

乳头乳晕复合体(NAC)坏死是保乳乳房切除术(NSM)的致命弱点,评估哪些患者有发生这种并发症的风险具有一定难度(Ann Surg Oncol 2014;21(1):100-106)。

目的

开发和验证一种可准确预测前瞻性队列中 NAC 坏死的模型。

设计

数据来自于我院(一家高容量的三级学术中心)于 2015 年 1 月至 2019 年 7 月期间接受 NSM 和即刻乳房重建的回顾性队列患者。收集了术前临床特征、手术变量和术后并发症,并将其与 NAC 结果相关联。利用这些结果训练随机森林分类模型来预测坏死。然后,在 2020 年 6 月至 2021 年 6 月期间接受 NSM 加即刻乳房重建的前瞻性队列患者中验证了我们的模型。

结果

前瞻性队列中 NAC 坏死的模型预测准确率为 97%(95%置信区间 [CI],0.89-0.99;P=0.009)。这与回顾性队列中的预测准确率(0.97;95% CI,0.95-0.99)一致。高特异性(0.98;95% CI,0.90-1.0)和阴性预测值(0.98;95% CI,0.90-1.0)也在前瞻性队列中得到了证实。植入物重量是预测风险增加的最主要因素,重量大于 400g 与 NAC 缺血的相关性最强。

结论和相关性

我们的机器学习模型前瞻性地预测了 NAC 坏死病例,准确率很高。一个重要的预测因素是植入物重量,这是一个可调节的风险因素,可以通过调整来降低 NAC 坏死和相关术后并发症的风险。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验