Suppr超能文献

基于 Transformer 的多任务学习框架用于肌电模式识别,支持肌肉力量估计。

A Transformer-Based Multi-Task Learning Framework for Myoelectric Pattern Recognition Supporting Muscle Force Estimation.

出版信息

IEEE Trans Neural Syst Rehabil Eng. 2023;31:3255-3264. doi: 10.1109/TNSRE.2023.3298797. Epub 2023 Aug 18.

Abstract

Simultaneous implementation of myoelectric pattern recognition and muscle force estimation is highly demanded in building natural gestural interfaces but a challenging task due to the gesture classification accuracy degradation under varying muscle strengths. To address this problem, a novel method using transformer-based multi-task learning (MTL-Transformer) for the prediction of both myoelectric patterns and corresponding muscle strengths was proposed to describe the inherent characteristics of an individual gesture pattern under different force conditions, thereby improving the accuracy of myoelectric pattern recognition. In addition, the transformer model enabled the characterization of long-term temporal correlations to ensure precise and smooth estimation of the muscle force. The performance of the proposed MTL-Transformer framework was evaluated via experiments of classifying eleven hand gestures and estimating the corresponding muscle force simultaneously, using high-density surface electromyogram (HD-sEMG) recordings from forearm flexor muscles of eleven intact-limbed subjects. The MTL-Transformer framework yielded high classification accuracy (98.70±1.21%) and low root mean square deviation (12.59±2.76%), and outperformed other two common temporally modelling methods significantly ( ) in terms of both improved gesture recognition accuracies and reduced muscle force estimation errors. The MTL-Transformer framework is demonstrated as an effective solution for simultaneous implementation of myoelectric pattern recognition and muscle force estimation. This study promotes the development of robust and smooth myoelectric control systems, with wide applications in gestural interfaces, prosthetic and orthotic control.

摘要

在构建自然手势界面时,同时实现肌电模式识别和肌肉力量估计是非常需要的,但由于在不同肌肉力量下手势分类精度降低,这是一项具有挑战性的任务。为了解决这个问题,提出了一种使用基于变压器的多任务学习(MTL-Transformer)的新方法,用于预测肌电模式和相应的肌肉力量,以描述不同力条件下个体手势模式的固有特征,从而提高肌电模式识别的准确性。此外,变压器模型能够描述长期时间相关性,以确保肌肉力量的精确和平滑估计。通过使用 11 名完整肢体受试者前臂屈肌的高密度表面肌电图(HD-sEMG)记录,对同时分类 11 个手势和估计相应肌肉力量的实验,评估了所提出的 MTL-Transformer 框架的性能。MTL-Transformer 框架的分类精度(98.70±1.21%)高,均方根偏差(12.59±2.76%)低,在提高手势识别精度和降低肌肉力量估计误差方面,明显优于其他两种常见的时间建模方法( )。MTL-Transformer 框架被证明是同时实现肌电模式识别和肌肉力量估计的有效解决方案。本研究促进了稳健和流畅的肌电控制系统的发展,在手势界面、假肢和矫形控制中有广泛的应用。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验