Suppr超能文献

为可靠的肌电人机接口选择合适的手势

Selection of suitable hand gestures for reliable myoelectric human computer interface.

作者信息

Castro Maria Claudia F, Arjunan Sridhar P, Kumar Dinesh K

机构信息

Electrical Engineering Department, Centro Universitário da FEI, Av. Humberto de A. C. Branco, 3.972, São Bernardo do Campo, SP, 09850-901, Brazil.

Biosignal Lab., School of Electrical and Computer Engineering, RMIT University, GPO Box 2476, Melbourne, VIC, 3001, Australia.

出版信息

Biomed Eng Online. 2015 Apr 9;14:30. doi: 10.1186/s12938-015-0025-5.

Abstract

BACKGROUND

Myoelectric controlled prosthetic hand requires machine based identification of hand gestures using surface electromyogram (sEMG) recorded from the forearm muscles. This study has observed that a sub-set of the hand gestures have to be selected for an accurate automated hand gesture recognition, and reports a method to select these gestures to maximize the sensitivity and specificity.

METHODS

Experiments were conducted where sEMG was recorded from the muscles of the forearm while subjects performed hand gestures and then was classified off-line. The performances of ten gestures were ranked using the proposed Positive-Negative Performance Measurement Index (PNM), generated by a series of confusion matrices.

RESULTS

When using all the ten gestures, the sensitivity and specificity was 80.0% and 97.8%. After ranking the gestures using the PNM, six gestures were selected and these gave sensitivity and specificity greater than 95% (96.5% and 99.3%); Hand open, Hand close, Little finger flexion, Ring finger flexion, Middle finger flexion and Thumb flexion.

CONCLUSION

This work has shown that reliable myoelectric based human computer interface systems require careful selection of the gestures that have to be recognized and without such selection, the reliability is poor.

摘要

背景

肌电控制的假手需要基于机器利用从前臂肌肉记录的表面肌电图(sEMG)来识别手势。本研究观察到,为实现准确的自动手势识别,必须选择一部分手势,并报告了一种选择这些手势以最大化灵敏度和特异性的方法。

方法

进行了实验,在受试者执行手势时从前臂肌肉记录sEMG,然后进行离线分类。使用由一系列混淆矩阵生成的提议的正负性能测量指数(PNM)对十种手势的性能进行排名。

结果

使用所有十种手势时,灵敏度和特异性分别为80.0%和97.8%。使用PNM对手势进行排名后,选择了六种手势,其灵敏度和特异性均大于95%(分别为96.5%和99.3%);即手张开、手闭合、小指弯曲、无名指弯曲、中指弯曲和拇指弯曲。

结论

这项工作表明,可靠的基于肌电的人机接口系统需要仔细选择要识别的手势,否则可靠性较差。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/7cb9/4393867/b9cd62b4c4c8/12938_2015_25_Fig1_HTML.jpg

相似文献

1
Selection of suitable hand gestures for reliable myoelectric human computer interface.
Biomed Eng Online. 2015 Apr 9;14:30. doi: 10.1186/s12938-015-0025-5.
3
Pattern recognition of hand movements with low density sEMG for prosthesis control purposes.
IEEE Int Conf Rehabil Robot. 2013 Jun;2013:6650361. doi: 10.1109/ICORR.2013.6650361.
5
[Research on finger key-press gesture recognition based on surface electromyographic signals].
Sheng Wu Yi Xue Gong Cheng Xue Za Zhi. 2011 Apr;28(2):352-6, 370.
6
Ranking hand movements for myoelectric pattern recognition considering forearm muscle structure.
Med Biol Eng Comput. 2017 Aug;55(8):1507-1518. doi: 10.1007/s11517-016-1608-4. Epub 2017 Jan 4.
7
Estimation of independent and dependent components of non-invasive EMG using fast ICA: validation in recognising complex gestures.
Comput Methods Biomech Biomed Engin. 2011 Dec;14(12):1105-11. doi: 10.1080/10255842.2010.515211. Epub 2011 May 24.
8
Hybrid independent component analysis and twin support vector machine learning scheme for subtle gesture recognition.
Biomed Tech (Berl). 2010 Oct;55(5):301-7. doi: 10.1515/BMT.2010.038. Epub 2010 Sep 15.
9
A Transformer-Based Multi-Task Learning Framework for Myoelectric Pattern Recognition Supporting Muscle Force Estimation.
IEEE Trans Neural Syst Rehabil Eng. 2023;31:3255-3264. doi: 10.1109/TNSRE.2023.3298797. Epub 2023 Aug 18.
10
A novel energy-motion model for continuous sEMG decoding: from muscle energy to motor pattern.
J Neural Eng. 2021 Feb 22;18(1). doi: 10.1088/1741-2552/abbece.

引用本文的文献

3
Locomo-Net: A Low -Complex Deep Learning Framework for sEMG-Based Hand Movement Recognition for Prosthetic Control.
IEEE J Transl Eng Health Med. 2020 Sep 15;8:2100812. doi: 10.1109/JTEHM.2020.3023898. eCollection 2020.
6
Non-Uniform Sample Assignment in Training Set Improving Recognition of Hand Gestures Dominated with Similar Muscle Activities.
Front Neurorobot. 2018 Feb 12;12:3. doi: 10.3389/fnbot.2018.00003. eCollection 2018.

本文引用的文献

2
High-density surface EMG maps from upper-arm and forearm muscles.
J Neuroeng Rehabil. 2012 Dec 10;9:85. doi: 10.1186/1743-0003-9-85.
3
Simultaneous and proportional estimation of hand kinematics from EMG during mirrored movements at multiple degrees-of-freedom.
IEEE Trans Neural Syst Rehabil Eng. 2012 May;20(3):371-8. doi: 10.1109/TNSRE.2011.2178039. Epub 2011 Dec 13.
6
Orthogonal fuzzy neighborhood discriminant analysis for multifunction myoelectric hand control.
IEEE Trans Biomed Eng. 2010 Jun;57(6):1410-9. doi: 10.1109/TBME.2009.2039480. Epub 2010 Feb 17.
7
Quantifying pattern recognition-based myoelectric control of multifunctional transradial prostheses.
IEEE Trans Neural Syst Rehabil Eng. 2010 Apr;18(2):185-92. doi: 10.1109/TNSRE.2009.2039619. Epub 2010 Jan 12.
8
Optimal electrode configurations for finger movement classification using EMG.
Annu Int Conf IEEE Eng Med Biol Soc. 2009;2009:2987-90. doi: 10.1109/IEMBS.2009.5332520.
9
Decoding of individuated finger movements using surface electromyography.
IEEE Trans Biomed Eng. 2009 May;56(5):1427-34. doi: 10.1109/TBME.2008.2005485.
10
Conjugate-prior-penalized learning of Gaussian mixture models for multifunction myoelectric hand control.
IEEE Trans Neural Syst Rehabil Eng. 2009 Jun;17(3):287-97. doi: 10.1109/TNSRE.2009.2015177. Epub 2009 Feb 18.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验