IEEE Trans Neural Syst Rehabil Eng. 2022;30:1374-1383. doi: 10.1109/TNSRE.2022.3173946. Epub 2022 May 30.
Gestural interfaces based on surface electromyographic (sEMG) signal have been widely explored. Nevertheless, due to the individual differences in the sEMG signals, it is very challenging for a myoelectric pattern recognition control system to adapt cross-user variability. Unsupervised domain adaptation (UDA) has achieved unprecedented success in improving the cross-domain robustness, and it is a promising approach to solve the cross-user challenge. Existing UDA methods largely ignore the instantaneous data distribution during model updating, thus deteriorating the feature representation given a large domain shift. To address this issue, a novel method is proposed based on a UDA model incorporated with a self-guided adaptive sampling (SGAS) strategy. This strategy is designed to utilize the domain distance in a kernel space as an indicator to screen out reliable instantaneous samples for updating the classifier. Thus, it enables improved alignment of feature representations of myoelectric patterns across users. To evaluate the performance of the proposed method, sEMG data were recorded from forearm muscles of nine subjects performing six finger and wrist gestures. Experiment results show that the UDA method with the SGAS strategy achieved a mean accuracy of 90.41% ± 14.44% in a cross-user classification manner, outperformed the state-of-the-art methods with statistical significance ( ). This study demonstrates the effectiveness of the proposed UDA framework and offers a novel tool for implementing cross-user myoelectric pattern recognition towards a multi-user and user-independent control.
基于表面肌电(sEMG)信号的手势界面已经得到了广泛的探索。然而,由于 sEMG 信号的个体差异,肌电模式识别控制系统很难适应跨用户的变化。无监督领域自适应(UDA)在提高跨领域鲁棒性方面取得了前所未有的成功,是解决跨用户挑战的一种很有前途的方法。现有的 UDA 方法在模型更新过程中在很大程度上忽略了瞬时数据分布,从而在存在较大域转移的情况下,降低了特征表示。为了解决这个问题,提出了一种新的方法,该方法基于结合了自指导自适应采样(SGAS)策略的 UDA 模型。该策略旨在利用核空间中的域距离作为指示符,筛选出用于更新分类器的可靠瞬时样本。从而,能够改善跨用户肌电模式的特征表示的对齐。为了评估所提出方法的性能,从九名受试者的前臂肌肉中记录了执行六个手指和手腕运动的 sEMG 数据。实验结果表明,具有 SGAS 策略的 UDA 方法在跨用户分类方式下的平均准确率为 90.41%±14.44%,明显优于具有统计学意义()的最先进方法。这项研究证明了所提出的 UDA 框架的有效性,并为实现多用户和用户独立控制的跨用户肌电模式识别提供了一种新工具。