Erasmus School of Economics, Erasmus University Rotterdam, Rotterdam, The Netherlands.
Tinbergen Institute, Amsterdam, The Netherlands.
Nat Commun. 2023 Jul 25;14(1):4473. doi: 10.1038/s41467-023-40069-4.
Measurement error in polygenic indices (PGIs) attenuates the estimation of their effects in regression models. We analyze and compare two approaches addressing this attenuation bias: Obviously Related Instrumental Variables (ORIV) and the PGI Repository Correction (PGI-RC). Through simulations, we show that the PGI-RC performs slightly better than ORIV, unless the prediction sample is very small (N < 1000) or when there is considerable assortative mating. Within families, ORIV is the best choice since the PGI-RC correction factor is generally not available. We verify the empirical validity of the simulations by predicting educational attainment and height in a sample of siblings from the UK Biobank. We show that applying ORIV between families increases the standardized effect of the PGI by 12% (height) and by 22% (educational attainment) compared to a meta-analysis-based PGI, yet estimates remain slightly below the PGI-RC estimates. Furthermore, within-family ORIV regression provides the tightest lower bound for the direct genetic effect, increasing the lower bound for the standardized direct genetic effect on educational attainment from 0.14 to 0.18 (+29%), and for height from 0.54 to 0.61 (+13%) compared to a meta-analysis-based PGI.
多基因指数 (PGI) 的测量误差会降低其在回归模型中效应估计的准确性。我们分析并比较了两种解决这种衰减偏差的方法:明显相关工具变量 (ORIV) 和 PGI 存储库校正 (PGI-RC)。通过模拟,我们表明 PGI-RC 的性能略优于 ORIV,除非预测样本非常小 (N < 1000) 或存在相当大的同型交配。在家庭内部,ORIV 是最佳选择,因为通常无法获得 PGI-RC 校正因子。我们通过在 UK Biobank 中来自兄弟姐妹的样本中预测教育程度和身高来验证模拟的经验有效性。我们表明,与基于荟萃分析的 PGI 相比,在家庭之间应用 ORIV 会使 PGI 的标准化效应增加 12%(身高)和 22%(教育程度),但估计值仍略低于 PGI-RC 的估计值。此外,家庭内的 ORIV 回归为直接遗传效应提供了最严格的下限,将教育程度的标准化直接遗传效应下限从 0.14 增加到 0.18 (+29%),身高的下限从 0.54 增加到 0.61 (+13%),与基于荟萃分析的 PGI 相比。