Suppr超能文献

基于知识蒸馏的轻量化人体活动识别

LHAR: Lightweight Human Activity Recognition on Knowledge Distillation.

出版信息

IEEE J Biomed Health Inform. 2024 Nov;28(11):6318-6328. doi: 10.1109/JBHI.2023.3298932. Epub 2024 Nov 6.

Abstract

Sensor-based Human Activity Recognition (HAR) is widely used in daily life and is the basic-level bridge to virtual healthcare in the metaverse. The current challenge is the low recognition accuracy for personalized users on smart wearable devices. The limited resource cannot support large deep learning models updated locally. Besides, integrating and transmitting sensor data to the cloud would reduce the efficiency. Considering the tradeoff between performance and complexity, we propose a Lightweight Human Activity Recognition (LHAR) framework. In LHAR, we combine the cross-people HAR task with the lightweight model task. LHAR framework is designed on the teacher-student architecture and the student network consists of multiple depthwise separable convolution layers to achieve fewer parameters. The dark knowledge distilled from the complex teacher model enhances the generalization ability of LHAR. To achieve effective knowledge distillation, we propose two optimization methods. Firstly, we train the teacher model by ensemble learning to promote teacher performance. Secondly, a multi-channel data augmentation method is proposed for the diversity of the dataset, which is a plug-in operation for the ensemble teacher model. In the experiments, we compare LHAR with state-of-art models in comparison evaluation, ablation study and the hyperparameter analysis, which proves the better performance of LHAR in efficiency and effectiveness.

摘要

基于传感器的人体活动识别 (HAR) 在日常生活中得到了广泛的应用,是元宇宙中虚拟医疗保健的基本环节。目前的挑战是智能可穿戴设备上针对个性化用户的识别准确率较低。有限的资源无法支持本地更新的大型深度学习模型。此外,将传感器数据集成和传输到云端会降低效率。考虑到性能和复杂性之间的权衡,我们提出了一个轻量级人体活动识别 (LHAR) 框架。在 LHAR 中,我们将跨人群的 HAR 任务与轻量级模型任务相结合。LHAR 框架基于教师-学生架构设计,学生网络由多个深度可分离卷积层组成,以实现更少的参数。从复杂的教师模型中提取的暗知识增强了 LHAR 的泛化能力。为了实现有效的知识蒸馏,我们提出了两种优化方法。首先,我们通过集成学习训练教师模型,以提高教师的性能。其次,提出了一种多通道数据增强方法,用于数据集的多样性,这是集成教师模型的插件操作。在实验中,我们在对比评估、消融研究和超参数分析中比较了 LHAR 与最先进的模型,证明了 LHAR 在效率和效果方面的更好性能。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验