Suppr超能文献

基于深度学习的复杂体育动作识别与重复计数。

Recognition and Repetition Counting for ComplexPhysical Exercises with Deep Learning.

机构信息

ETH Zurich, Department of Information Technology and Electrical Engineering, 8092 Zurich, Switzerland.

出版信息

Sensors (Basel). 2019 Feb 10;19(3):714. doi: 10.3390/s19030714.

Abstract

Activity recognition using off-the-shelf smartwatches is an important problem in humanactivity recognition. In this paper, we present an end-to-end deep learning approach, able to provideprobability distributions over activities from raw sensor data. We apply our methods to 10 complexfull-body exercises typical in CrossFit, and achieve a classification accuracy of 99.96%. We additionallyshow that the same neural network used for exercise recognition can also be used in repetitioncounting. To the best of our knowledge, our approach to repetition counting is novel and performswell, counting correctly within an error of 1 repetitions in 91% of the performed sets.

摘要

使用现成的智能手表进行活动识别是人体活动识别中的一个重要问题。在本文中,我们提出了一种端到端的深度学习方法,能够从原始传感器数据中提供活动的概率分布。我们将我们的方法应用于 10 种典型的 CrossFit 中的复杂全身运动,并实现了 99.96%的分类准确率。我们还表明,用于运动识别的相同神经网络也可用于重复计数。据我们所知,我们的重复计数方法是新颖的,并且在 91%的执行集中,其计数误差在 1 次以内。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/c4db/6387025/d4a4269f25fb/sensors-19-00714-g0A1.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验