Suppr超能文献

深度神经网络集成模型:用于声学信号不确定性感知分割的深度学习方法

DISCO: A deep learning ensemble for uncertainty-aware segmentation of acoustic signals.

机构信息

College of Pharmacy, University of Arizona, Tucson, AZ, United States of America.

Department of Computer Science, University of Montana, Missoula, MT, United States of America.

出版信息

PLoS One. 2023 Jul 26;18(7):e0288172. doi: 10.1371/journal.pone.0288172. eCollection 2023.

Abstract

Recordings of animal sounds enable a wide range of observational inquiries into animal communication, behavior, and diversity. Automated labeling of sound events in such recordings can improve both throughput and reproducibility of analysis. Here, we describe our software package for labeling elements in recordings of animal sounds, and demonstrate its utility on recordings of beetle courtships and whale songs. The software, DISCO, computes sensible confidence estimates and produces labels with high precision and accuracy. In addition to the core labeling software, it provides a simple tool for labeling training data, and a visual system for analysis of resulting labels. DISCO is open-source and easy to install, it works with standard file formats, and it presents a low barrier of entry to use.

摘要

动物声音的记录使人们能够广泛地进行动物交流、行为和多样性的观察研究。在这些记录中自动标记声音事件可以提高分析的效率和可重复性。在这里,我们描述了用于标记动物声音记录中元素的软件包,并展示了其在甲虫求偶和鲸鱼歌声记录中的应用。该软件 DISCO 计算出合理的置信度估计,并生成具有高精度和高准确性的标签。除了核心的标记软件外,它还提供了一个用于标记训练数据的简单工具,以及一个用于分析生成标签的可视化系统。DISCO 是开源的,易于安装,它可以与标准文件格式一起使用,并且使用门槛很低。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/8572/10370718/781c4d3beb3e/pone.0288172.g001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验