Suppr超能文献

基于有限差分算子分裂和无网格技术的时空 COVID-19 疫苗模型的数值研究。

A numerical study of spatio-temporal COVID-19 vaccine model via finite-difference operator-splitting and meshless techniques.

机构信息

Department of Mathematics, University of Peshawar, Khyber Pakhtunkhwa, Pakistan.

Department of Mathematics College of Science, King Khalid University, Abha, 61413, Saudi Arabia.

出版信息

Sci Rep. 2023 Jul 26;13(1):12108. doi: 10.1038/s41598-023-38925-w.

Abstract

In this paper, a new spatio-temporal model is formulated to study the spread of coronavirus infection (COVID-19) in a spatially heterogeneous environment with the impact of vaccination. Initially, a detailed qualitative analysis of the spatio-temporal model is presented. The existence, uniqueness, positivity, and boundedness of the model solution are investigated. Local asymptotical stability of the diffusive COVID-19 model at steady state is carried out using well-known criteria. Moreover, a suitable nonlinear Lyapunov functional is constructed for the global asymptotical stability of the spatio-temporal model. Further, the model is solved numerically based on uniform and non-uniform initial conditions. Two different numerical schemes named: finite difference operator-splitting and mesh-free operator-splitting based on multi-quadratic radial basis functions are implemented in the numerical study. The impact of diffusion as well as some pharmaceutical and non-pharmaceutical control measures, i.e., reducing an effective contact causing infection transmission, vaccination rate and vaccine waning rate on the disease dynamics is presented in a spatially heterogeneous environment. Furthermore, the impact of the  aforementioned interventions is investigated with and without diffusion on the incidence of disease. The simulation results conclude that the random motion of individuals has a significant impact on the disease dynamics and helps in setting a better control strategy for disease eradication.

摘要

本文构建了一个新的时空模型,以研究具有疫苗接种影响的空间异质环境中冠状病毒感染(COVID-19)的传播。首先,对时空模型进行了详细的定性分析。研究了模型解的存在性、唯一性、正定性和有界性。利用著名的准则对扩散 COVID-19 模型在定态下的局部渐近稳定性进行了研究。此外,还为时空模型的全局渐近稳定性构建了合适的非线性李雅普诺夫泛函。进一步,基于均匀和非均匀初始条件对模型进行数值求解。在数值研究中,采用了两种不同的数值方案:基于多元二次径向基函数的有限差分算子分裂和无网格算子分裂。在空间异质环境中,研究了扩散以及一些药物和非药物控制措施(即降低导致感染传播的有效接触率、接种率和疫苗衰减率)对疾病动态的影响。此外,还研究了在有和没有扩散的情况下,上述干预措施对疾病发生率的影响。模拟结果表明,个体的随机运动对疾病动态有重大影响,并有助于制定更好的疾病根除控制策略。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/0de3/10372105/7a27020ee897/41598_2023_38925_Fig1_HTML.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验