Suppr超能文献

带有接种和扩散的 COVID-19 传染病模型的数值研究。

A numerical study of COVID-19 epidemic model with vaccination and diffusion.

机构信息

Department of Mathematics, Faculty of Sciences, King Abdulaziz University, Jeddah 21589, Saudi Arabia.

Department of Mathematics, University of Peshawar, Khyber Pakhtunkhwa, Pakistan.

出版信息

Math Biosci Eng. 2023 Jan;20(3):4643-4672. doi: 10.3934/mbe.2023215. Epub 2022 Dec 28.

Abstract

The coronavirus infectious disease (or COVID-19) is a severe respiratory illness. Although the infection incidence decreased significantly, still it remains a major panic for human health and the global economy. The spatial movement of the population from one region to another remains one of the major causes of the spread of the infection. In the literature, most of the COVID-19 models have been constructed with only temporal effects. In this paper, a vaccinated spatio-temporal COVID-19 mathematical model is developed to study the impact of vaccines and other interventions on the disease dynamics in a spatially heterogeneous environment. Initially, some of the basic mathematical properties including existence, uniqueness, positivity, and boundedness of the diffusive vaccinated models are analyzed. The model equilibria and the basic reproductive number are presented. Further, based upon the uniform and non-uniform initial conditions, the spatio-temporal COVID-19 mathematical model is solved numerically using finite difference operator-splitting scheme. Furthermore, detailed simulation results are presented in order to visualize the impact of vaccination and other model key parameters with and without diffusion on the pandemic incidence. The obtained results reveal that the suggested intervention with diffusion has a significant impact on the disease dynamics and its control.

摘要

冠状病毒传染病(或 COVID-19)是一种严重的呼吸道疾病。尽管感染发病率显著下降,但它仍然是人类健康和全球经济的主要恐慌。人口从一个地区到另一个地区的空间移动仍然是感染传播的主要原因之一。在文献中,大多数 COVID-19 模型仅具有时间效应。本文开发了一种接种疫苗的时空 COVID-19 数学模型,以研究在空间异质环境中疫苗和其他干预措施对疾病动态的影响。最初,分析了扩散接种模型的一些基本数学性质,包括存在性、唯一性、正定性和有界性。提出了模型平衡点和基本繁殖数。进一步,基于均匀和非均匀初始条件,使用有限差分算子分裂方案数值求解时空 COVID-19 数学模型。此外,为了直观地展示接种疫苗和其他模型关键参数在有无扩散情况下对大流行发病率的影响,给出了详细的模拟结果。结果表明,具有扩散的建议干预措施对疾病动态及其控制有重大影响。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验