Suppr超能文献

生物穿刺中速率介导的形态-功能关系的研究。

Investigation of the rate-mediated form-function relationship in biological puncture.

机构信息

Department of Evolution, Ecology, and Behavior, School of Integrative Biology, University of Illinois Urbana-Champaign, Urbana, IL, 61801, USA.

出版信息

Sci Rep. 2023 Jul 26;13(1):12097. doi: 10.1038/s41598-023-39092-8.

Abstract

Puncture is a vital mechanism for survival in a wide range of organisms across phyla, serving biological functions such as prey capture, defense, and reproduction. Understanding how the shape of the puncture tool affects its functional performance is crucial to uncovering the mechanics underlying the diversity and evolution of puncture-based systems. However, such form-function relationships are often complicated by the dynamic nature of living systems. Puncture systems in particular operate over a wide range of speeds to penetrate biological tissues. Current studies on puncture biomechanics lack systematic characterization of the complex, rate-mediated, interaction between tool and material across this dynamic range. To fill this knowledge gap, we establish a highly controlled experimental framework for dynamic puncture to investigate the relationship between the puncture performance (characterized by the depth of puncture) and the tool sharpness (characterized by the cusp angle) across a wide range of bio-relevant puncture speeds (from quasi-static to [Formula: see text] 50 m/s). Our results show that the sensitivity of puncture performance to variations in tool sharpness reduces at higher puncture speeds. This trend is likely due to rate-based viscoelastic and inertial effects arising from how materials respond to dynamic loads. The rate-dependent form-function relationship has important biological implications: While passive/low-speed puncture organisms likely rely heavily on sharp puncture tools to successfully penetrate and maintain functionalities, higher-speed puncture systems may allow for greater variability in puncture tool shape due to the relatively geometric-insensitive puncture performance, allowing for higher adaptability during the evolutionary process to other mechanical factors.

摘要

刺穿是跨门动物广泛存在的一种重要生存机制,具有捕食、防御和繁殖等生物学功能。了解刺穿工具的形状如何影响其功能性能,对于揭示基于刺穿系统的多样性和进化的力学机制至关重要。然而,这种形态与功能的关系往往受到生物系统动态性质的影响。刺穿系统尤其在广泛的速度范围内运作,以穿透生物组织。目前对刺穿生物力学的研究缺乏对工具和材料之间在这个动态范围内复杂、受速率影响的相互作用的系统描述。为了填补这一知识空白,我们建立了一个高度受控的动态刺穿实验框架,以研究刺穿性能(以刺穿深度为特征)和工具锋利度(以尖角度为特征)之间的关系,涵盖了广泛的生物相关刺穿速度(从准静态到 50 米/秒)。我们的结果表明,刺穿性能对工具锋利度变化的敏感性在较高刺穿速度下降低。这种趋势可能是由于材料对动态载荷的响应产生的基于速率的粘弹性和惯性效应所致。这种速率相关的形态与功能关系具有重要的生物学意义:虽然被动/低速刺穿生物可能严重依赖锋利的刺穿工具来成功穿透并维持功能,但由于相对几何不敏感的刺穿性能,高速刺穿系统可能允许在刺穿工具形状上有更大的可变性,从而在进化过程中对其他机械因素具有更高的适应性。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验