Suppr超能文献

唾液酸依赖性刺丝囊排出过程与其物理化学性质的关系是纳米医学诊断和治疗工具的典范。

The Sialic Acid-Dependent Nematocyst Discharge Process in Relation to Its Physical-Chemical Properties Is A Role Model for Nanomedical Diagnostic and Therapeutic Tools.

机构信息

Institute of BioPharmaceutical Research, Liaocheng University, Liaocheng 252059, China.

RI-B-NT-Research Institute of Bioinformatics and Nanotechnology, Schauenburgerstr. 116, 24118 Kiel, Germany.

出版信息

Mar Drugs. 2019 Aug 12;17(8):469. doi: 10.3390/md17080469.

Abstract

Formulas derived from theoretical physics provide important insights about the nematocyst discharge process of Cnidaria (Hydra, jellyfishes, box-jellyfishes and sea-anemones). Our model description of the fastest process in living nature raises and answers questions related to the material properties of the cell- and tubule-walls of nematocysts including their polysialic acid (polySia) dependent target function. Since a number of tumor-cells, especially brain-tumor cells such as neuroblastoma tissues carry the polysaccharide chain polySia in similar concentration as fish eggs or fish skin, it makes sense to use these findings for new diagnostic and therapeutic approaches in the field of nanomedicine. Therefore, the nematocyst discharge process can be considered as a bionic blue-print for future nanomedical devices in cancer diagnostics and therapies. This approach is promising because the physical background of this process can be described in a sufficient way with formulas presented here. Additionally, we discuss biophysical and biochemical experiments which will allow us to define proper boundary conditions in order to support our theoretical model approach. PolySia glycans occur in a similar density on malignant tumor cells than on the cell surfaces of Cnidarian predators and preys. The knowledge of the polySia-dependent initiation of the nematocyst discharge process in an intact nematocyte is an essential prerequisite regarding the further development of target-directed nanomedical devices for diagnostic and therapeutic purposes. The theoretical description as well as the computationally and experimentally derived results about the biophysical and biochemical parameters can contribute to a proper design of anti-tumor drug ejecting vessels which use a stylet-tubule system. Especially, the role of nematogalectins is of interest because these bridging proteins contribute as well as special collagen fibers to the elastic band properties. The basic concepts of the nematocyst discharge process inside the tubule cell walls of nematocysts were studied in jellyfishes and in Hydra which are ideal model organisms. Hydra has already been chosen by Alan Turing in order to figure out how the chemical basis of morphogenesis can be described in a fundamental way. This encouraged us to discuss the action of nematocysts in relation to morphological aspects and material requirements. Using these insights, it is now possible to discuss natural and artificial nematocyst-like vessels with optimized properties for a diagnostic and therapeutic use, e.g., in neurooncology. We show here that crucial physical parameters such as pressure thresholds and elasticity properties during the nematocyst discharge process can be described in a consistent and satisfactory way with an impact on the construction of new nanomedical devices.

摘要

从理论物理推导出的公式为刺胞动物(水螅、水母、箱形水母和海葵)的刺胞放电过程提供了重要的见解。我们对自然界最快过程的模型描述提出并回答了与刺胞的细胞和管状壁的材料特性相关的问题,包括它们依赖多糖唾液酸(polySia)的靶功能。由于许多肿瘤细胞,特别是神经母细胞瘤组织等脑肿瘤细胞,携带多糖链 polySia 的浓度与鱼卵或鱼皮相似,因此将这些发现应用于纳米医学领域的新诊断和治疗方法是有意义的。因此,刺胞放电过程可以被视为未来癌症诊断和治疗的纳米医学设备的仿生蓝图。这种方法很有前途,因为可以用这里提供的公式充分描述这个过程的物理背景。此外,我们还讨论了生物物理和生物化学实验,这些实验将允许我们定义适当的边界条件,以支持我们的理论模型方法。多糖唾液酸聚糖在恶性肿瘤细胞上的存在密度与刺胞动物捕食者和猎物的细胞表面相似。了解完整的刺胞细胞中 polySia 依赖性刺胞放电过程的启动是进一步开发针对诊断和治疗目的的靶向纳米医学设备的必要前提。关于生物物理和生物化学参数的理论描述以及计算和实验推导的结果可以为使用刺针-管状系统的抗肿瘤药物喷射容器的适当设计做出贡献。特别是,神经节糖蛋白的作用很有趣,因为这些桥连蛋白以及特殊的胶原纤维对弹性带特性有贡献。在水母和水螅中研究了刺胞内管状细胞壁内的刺胞放电过程的基本概念,水螅已经被艾伦·图灵(Alan Turing)选中,以便以基本的方式描述形态发生的化学基础。这鼓励我们讨论刺胞的作用与形态方面和材料要求的关系。利用这些见解,现在可以讨论具有用于诊断和治疗的优化特性的天然和人工刺胞样容器,例如神经肿瘤学。我们在这里表明,在刺胞放电过程中,关键的物理参数,如压力阈值和弹性特性,可以用一致和令人满意的方式来描述,这对新的纳米医学设备的构建有影响。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/1454/6722915/1e2bdcd081ce/marinedrugs-17-00469-g001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验