Suppr超能文献

犬猫胸部X光片中半侧胸廓对称性的自动分类

Automatic classification of symmetry of hemithoraces in canine and feline radiographs.

作者信息

Tahghighi Peyman, Norena Nicole, Ukwatta Eran, Appleby Ryan B, Komeili Amin

机构信息

University of Guelph, School of Engineering, Guelph, Ontario, Canada.

University of Guelph, Ontario Veterinary College, Department of Clinical Studies, Guelph, Ontario, Canada.

出版信息

J Med Imaging (Bellingham). 2023 Jul;10(4):044004. doi: 10.1117/1.JMI.10.4.044004. Epub 2023 Jul 25.

Abstract

PURPOSE

Thoracic radiographs are commonly used to evaluate patients with confirmed or suspected thoracic pathology. Proper patient positioning is more challenging in canine and feline radiography than in humans due to less patient cooperation and body shape variation. Improper patient positioning during radiograph acquisition has the potential to lead to a misdiagnosis. Asymmetrical hemithoraces are one of the indications of obliquity for which we propose an automatic classification method.

APPROACH

We propose a hemithoraces segmentation method based on convolutional neural networks and active contours. We utilized the U-Net model to segment the ribs and spine and then utilized active contours to find left and right hemithoraces. We then extracted features from the left and right hemithoraces to train an ensemble classifier, which include support vector machine, gradient boosting, and multi-layer perceptron. Five-fold cross-validation was used, thorax segmentation was evaluated by intersection over union (IoU), and symmetry classification was evaluated using precision, recall, area under curve, and F1 score.

RESULTS

Classification of symmetry for 900 radiographs reported an F1 score of 82.8%. To test the robustness of the proposed thorax segmentation method to underexposure and overexposure, we synthetically corrupted properly exposed radiographs and evaluated results using IoU. The results showed that the model's IoU for underexposure and overexposure dropped by 2.1% and 1.2%, respectively.

CONCLUSIONS

Our results indicate that the proposed thorax segmentation method is robust to poor exposure radiographs. The proposed thorax segmentation method can be applied to human radiography with minimal changes.

摘要

目的

胸部X光片常用于评估确诊或疑似胸部病变的患者。由于犬猫在X光摄影时配合度较低且体型各异,因此在犬猫X光摄影中,正确的患者体位摆放比在人类中更具挑战性。在获取X光片时患者体位摆放不当有可能导致误诊。不对称半胸是倾斜的指征之一,针对此我们提出了一种自动分类方法。

方法

我们提出了一种基于卷积神经网络和主动轮廓的半胸分割方法。我们利用U-Net模型分割肋骨和脊柱,然后利用主动轮廓找到左右半胸。然后我们从左右半胸中提取特征来训练一个集成分类器,其中包括支持向量机、梯度提升和多层感知器。采用五折交叉验证,通过交并比(IoU)评估胸部分割,使用精度、召回率、曲线下面积和F1分数评估对称性分类。

结果

对900张X光片的对称性分类报告的F1分数为82.8%。为了测试所提出的胸部分割方法对曝光不足和曝光过度的鲁棒性,我们对正确曝光的X光片进行合成损坏,并使用IoU评估结果。结果表明,该模型在曝光不足和曝光过度情况下的IoU分别下降了2.1%和1.2%。

结论

我们的结果表明,所提出的胸部分割方法对曝光不佳的X光片具有鲁棒性。所提出的胸部分割方法只需进行最小的改动就可应用于人体X光摄影。

相似文献

1
Automatic classification of symmetry of hemithoraces in canine and feline radiographs.
J Med Imaging (Bellingham). 2023 Jul;10(4):044004. doi: 10.1117/1.JMI.10.4.044004. Epub 2023 Jul 25.
2
CheXLocNet: Automatic localization of pneumothorax in chest radiographs using deep convolutional neural networks.
PLoS One. 2020 Nov 9;15(11):e0242013. doi: 10.1371/journal.pone.0242013. eCollection 2020.
3
Classification of the quality of canine and feline ventrodorsal and dorsoventral thoracic radiographs through machine learning.
Vet Radiol Ultrasound. 2024 Jul;65(4):417-428. doi: 10.1111/vru.13373. Epub 2024 Apr 26.
4
Transformer-Based Deep Learning Network for Tooth Segmentation on Panoramic Radiographs.
J Syst Sci Complex. 2023;36(1):257-272. doi: 10.1007/s11424-022-2057-9. Epub 2022 Oct 14.
5
Dental disease detection on periapical radiographs based on deep convolutional neural networks.
Int J Comput Assist Radiol Surg. 2021 Apr;16(4):649-661. doi: 10.1007/s11548-021-02319-y. Epub 2021 Mar 2.
6
Deep Learning-Based Automatic Detection of Ellipsoid Zone Loss in Spectral-Domain OCT for Hydroxychloroquine Retinal Toxicity Screening.
Ophthalmol Sci. 2021 Sep 25;1(4):100060. doi: 10.1016/j.xops.2021.100060. eCollection 2021 Dec.
7
Application of a fully deep convolutional neural network to the automation of tooth segmentation on panoramic radiographs.
Oral Surg Oral Med Oral Pathol Oral Radiol. 2020 Jun;129(6):635-642. doi: 10.1016/j.oooo.2019.11.007. Epub 2019 Nov 15.
8
Performance of deep learning technology for evaluation of positioning quality in periapical radiography of the maxillary canine.
Oral Radiol. 2022 Jan;38(1):147-154. doi: 10.1007/s11282-021-00538-2. Epub 2021 May 26.
10
Convolutional neural network for automated mass segmentation in mammography.
BMC Bioinformatics. 2020 Dec 9;21(Suppl 1):192. doi: 10.1186/s12859-020-3521-y.

引用本文的文献

1
Role of AI in diagnostic imaging error reduction.
Front Vet Sci. 2024 Aug 30;11:1437284. doi: 10.3389/fvets.2024.1437284. eCollection 2024.

本文引用的文献

1
Quality control system for mammographic breast positioning using deep learning.
Sci Rep. 2023 May 1;13(1):7066. doi: 10.1038/s41598-023-34380-9.
2
Automatic classification of canine thoracic radiographs using deep learning.
Sci Rep. 2021 Feb 17;11(1):3964. doi: 10.1038/s41598-021-83515-3.
3
Effects of macro-cracks on the load bearing capacity of articular cartilage.
Biomech Model Mechanobiol. 2019 Oct;18(5):1371-1381. doi: 10.1007/s10237-019-01149-x. Epub 2019 Apr 16.
4
3D Markerless asymmetry analysis in the management of adolescent idiopathic scoliosis.
BMC Musculoskelet Disord. 2018 Oct 24;19(1):385. doi: 10.1186/s12891-018-2303-4.
5
Prediction of radiographic abnormalities by the use of bag-of-features and convolutional neural networks.
Vet J. 2018 Jul;237:43-48. doi: 10.1016/j.tvjl.2018.05.009. Epub 2018 May 29.
6
Focal Loss for Dense Object Detection.
IEEE Trans Pattern Anal Mach Intell. 2020 Feb;42(2):318-327. doi: 10.1109/TPAMI.2018.2858826. Epub 2018 Jul 23.
7
Automated Chest X-Ray Screening: Can Lung Region Symmetry Help Detect Pulmonary Abnormalities?
IEEE Trans Med Imaging. 2018 May;37(5):1168-1177. doi: 10.1109/TMI.2017.2775636.
8
Correlation Between a Novel Surface Topography Asymmetry Analysis and Radiographic Data in Scoliosis.
Spine Deform. 2015 Jul;3(4):303-311. doi: 10.1016/j.jspd.2015.02.002. Epub 2015 Jun 11.
9
Combination of texture and shape features to detect pulmonary abnormalities in digital chest X-rays.
Int J Comput Assist Radiol Surg. 2016 Jan;11(1):99-106. doi: 10.1007/s11548-015-1242-x. Epub 2015 Jun 20.
10
Monitoring for idiopathic scoliosis curve progression using surface topography asymmetry analysis of the torso in adolescents.
Spine J. 2015 Apr 1;15(4):743-51. doi: 10.1016/j.spinee.2015.01.018. Epub 2015 Jan 20.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验