Tahghighi Peyman, Norena Nicole, Ukwatta Eran, Appleby Ryan B, Komeili Amin
University of Guelph, School of Engineering, Guelph, Ontario, Canada.
University of Guelph, Ontario Veterinary College, Department of Clinical Studies, Guelph, Ontario, Canada.
J Med Imaging (Bellingham). 2023 Jul;10(4):044004. doi: 10.1117/1.JMI.10.4.044004. Epub 2023 Jul 25.
Thoracic radiographs are commonly used to evaluate patients with confirmed or suspected thoracic pathology. Proper patient positioning is more challenging in canine and feline radiography than in humans due to less patient cooperation and body shape variation. Improper patient positioning during radiograph acquisition has the potential to lead to a misdiagnosis. Asymmetrical hemithoraces are one of the indications of obliquity for which we propose an automatic classification method.
We propose a hemithoraces segmentation method based on convolutional neural networks and active contours. We utilized the U-Net model to segment the ribs and spine and then utilized active contours to find left and right hemithoraces. We then extracted features from the left and right hemithoraces to train an ensemble classifier, which include support vector machine, gradient boosting, and multi-layer perceptron. Five-fold cross-validation was used, thorax segmentation was evaluated by intersection over union (IoU), and symmetry classification was evaluated using precision, recall, area under curve, and F1 score.
Classification of symmetry for 900 radiographs reported an F1 score of 82.8%. To test the robustness of the proposed thorax segmentation method to underexposure and overexposure, we synthetically corrupted properly exposed radiographs and evaluated results using IoU. The results showed that the model's IoU for underexposure and overexposure dropped by 2.1% and 1.2%, respectively.
Our results indicate that the proposed thorax segmentation method is robust to poor exposure radiographs. The proposed thorax segmentation method can be applied to human radiography with minimal changes.
胸部X光片常用于评估确诊或疑似胸部病变的患者。由于犬猫在X光摄影时配合度较低且体型各异,因此在犬猫X光摄影中,正确的患者体位摆放比在人类中更具挑战性。在获取X光片时患者体位摆放不当有可能导致误诊。不对称半胸是倾斜的指征之一,针对此我们提出了一种自动分类方法。
我们提出了一种基于卷积神经网络和主动轮廓的半胸分割方法。我们利用U-Net模型分割肋骨和脊柱,然后利用主动轮廓找到左右半胸。然后我们从左右半胸中提取特征来训练一个集成分类器,其中包括支持向量机、梯度提升和多层感知器。采用五折交叉验证,通过交并比(IoU)评估胸部分割,使用精度、召回率、曲线下面积和F1分数评估对称性分类。
对900张X光片的对称性分类报告的F1分数为82.8%。为了测试所提出的胸部分割方法对曝光不足和曝光过度的鲁棒性,我们对正确曝光的X光片进行合成损坏,并使用IoU评估结果。结果表明,该模型在曝光不足和曝光过度情况下的IoU分别下降了2.1%和1.2%。
我们的结果表明,所提出的胸部分割方法对曝光不佳的X光片具有鲁棒性。所提出的胸部分割方法只需进行最小的改动就可应用于人体X光摄影。