Suppr超能文献

个性化计算建模与机器学习相结合用于优化心脏再同步治疗中左心室起搏部位

Combination of personalized computational modeling and machine learning for optimization of left ventricular pacing site in cardiac resynchronization therapy.

作者信息

Dokuchaev Arsenii, Chumarnaya Tatiana, Bazhutina Anastasia, Khamzin Svyatoslav, Lebedeva Viktoria, Lyubimtseva Tamara, Zubarev Stepan, Lebedev Dmitry, Solovyova Olga

机构信息

Institute of Immunology and Physiology, Ural Branch of the Russian Academy of Sciences, Ekaterinburg, Russia.

Laboratory of Mathematical Modeling in Physiology and Medicine Based on Supercomputers, Ural Federal University, Ekaterinburg, Russia.

出版信息

Front Physiol. 2023 Jul 11;14:1162520. doi: 10.3389/fphys.2023.1162520. eCollection 2023.

Abstract

The 30-50% non-response rate to cardiac resynchronization therapy (CRT) calls for improved patient selection and optimized pacing lead placement. The study aimed to develop a novel technique using patient-specific cardiac models and machine learning (ML) to predict an optimal left ventricular (LV) pacing site (ML-PS) that maximizes the likelihood of LV ejection fraction (LVEF) improvement in a given CRT candidate. To validate the approach, we evaluated whether the distance D between the clinical LV pacing site (ref-PS) and ML-PS is associated with improved response rate and magnitude. We reviewed retrospective data for 57 CRT recipients. A positive response was defined as a more than 10% LVEF improvement. Personalized models of ventricular activation and ECG were created from MRI and CT images. The characteristics of ventricular activation during intrinsic rhythm and biventricular (BiV) pacing with ref-PS were derived from the models and used in combination with clinical data to train supervised ML classifiers. The best logistic regression model classified CRT responders with a high accuracy of 0.77 (ROC AUC = 0.84). The LR classifier, model simulations and Bayesian optimization with Gaussian process regression were combined to identify an optimal ML-PS that maximizes the ML-score of CRT response over the LV surface in each patient. The optimal ML-PS improved the ML-score by 17 ± 14% over the ref-PS. Twenty percent of the non-responders were reclassified as positive at ML-PS. Selection of positive patients with a max ML-score >0.5 demonstrated an improved clinical response rate. The distance D was shorter in the responders. The max ML-score and D were found to be strong predictors of CRT response (ROC AUC = 0.85). In the group with max ML-score > 0.5 and D< 30 mm, the response rate was 83% compared to 14% in the rest of the cohort. LVEF improvement in this group was higher than in the other patients (16 ± 8% vs. 7 ± 8%). A new technique combining clinical data, personalized heart modelling and supervised ML demonstrates the potential for use in clinical practice to assist in optimizing patient selection and predicting optimal LV pacing lead position in HF candidates for CRT.

摘要

心脏再同步治疗(CRT)有30%-50%的无反应率,这就需要改进患者选择方法并优化起搏导线放置。本研究旨在开发一种新技术,利用患者特异性心脏模型和机器学习(ML)来预测最佳左心室(LV)起搏部位(ML-PS),以使给定CRT候选患者的左心室射血分数(LVEF)提高的可能性最大化。为验证该方法,我们评估了临床LV起搏部位(ref-PS)与ML-PS之间的距离D是否与反应率提高和反应程度相关。我们回顾了57例CRT接受者的回顾性数据。阳性反应定义为LVEF提高超过10%。根据MRI和CT图像创建心室激活和心电图的个性化模型。从模型中得出固有心律和使用ref-PS进行双心室(BiV)起搏期间的心室激活特征,并与临床数据结合用于训练监督ML分类器。最佳逻辑回归模型对CRT反应者的分类准确率高达0.77(ROC AUC = 0.84)。将LR分类器、模型模拟和高斯过程回归的贝叶斯优化相结合,以确定每个患者在LV表面使CRT反应的ML分数最大化的最佳ML-PS。最佳ML-PS使ML分数比ref-PS提高了17±14%。20%的无反应者在ML-PS处被重新分类为阳性。选择最大ML分数>0.5的阳性患者显示临床反应率有所提高。反应者的距离D较短。发现最大ML分数和D是CRT反应的强预测指标(ROC AUC = 0.85)。在最大ML分数>0.5且D<30 mm的组中,反应率为83%,而队列其余部分为14%。该组的LVEF改善高于其他患者(16±8%对7±8%)。一种结合临床数据、个性化心脏建模和监督ML的新技术显示了在临床实践中用于协助优化患者选择和预测CRT心力衰竭候选患者最佳LV起搏导线位置的潜力。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/ebcd/10367108/ceaafdf9f6a3/fphys-14-1162520-g001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验