Popescu Dan M, Shade Julie K, Lai Changxin, Aronis Konstantinos N, Ouyang David, Moorthy M Vinayaga, Cook Nancy R, Lee Daniel C, Kadish Alan, Albert Christine M, Wu Katherine C, Maggioni Mauro, Trayanova Natalia A
Alliance for Cardiovascular Diagnostic and Treatment Innovation (ADVANCE), Johns Hopkins University, Baltimore, 21224, USA.
Johns Hopkins University School of Medicine, Department of Biomedical Engineering, Baltimore, 21224, USA.
Nat Cardiovasc Res. 2022 Apr;1(4):334-343. doi: 10.1038/s44161-022-00041-9. Epub 2022 Apr 7.
Sudden cardiac death from arrhythmia is a major cause of mortality worldwide. Here, we develop a novel deep learning (DL) approach that blends neural networks and survival analysis to predict patient-specific survival curves from contrast-enhanced cardiac magnetic resonance images and clinical covariates for patients with ischemic heart disease. The DL-predicted survival curves offer accurate predictions at times up to 10 years and allow for estimation of uncertainty in predictions. The performance of this learning architecture was evaluated on multi-center internal validation data and tested on an independent test set, achieving concordance index of 0.83 and 0.74, and 10-year integrated Brier score of 0.12 and 0.14. We demonstrate that our DL approach with only raw cardiac images as input outperforms standard survival models constructed using clinical covariates. This technology has the potential to transform clinical decision-making by offering accurate and generalizable predictions of patient-specific survival probabilities of arrhythmic death over time.
心律失常导致的心脏性猝死是全球主要的死亡原因。在此,我们开发了一种新颖的深度学习(DL)方法,该方法将神经网络与生存分析相结合,以根据缺血性心脏病患者的对比增强心脏磁共振图像和临床协变量预测患者特异性生存曲线。DL预测的生存曲线在长达10年的时间内提供了准确的预测,并允许估计预测中的不确定性。这种学习架构的性能在多中心内部验证数据上进行了评估,并在独立测试集上进行了测试,一致性指数分别为0.83和0.74,10年综合Brier分数分别为0.12和0.14。我们证明,仅以原始心脏图像作为输入的DL方法优于使用临床协变量构建的标准生存模型。该技术有可能通过提供随时间变化的心律失常性死亡患者特异性生存概率的准确且可推广的预测,来改变临床决策。