Suppr超能文献

利用心脏瘢痕的深度学习分析进行心律失常性猝死生存预测

Arrhythmic sudden death survival prediction using deep learning analysis of scarring in the heart.

作者信息

Popescu Dan M, Shade Julie K, Lai Changxin, Aronis Konstantinos N, Ouyang David, Moorthy M Vinayaga, Cook Nancy R, Lee Daniel C, Kadish Alan, Albert Christine M, Wu Katherine C, Maggioni Mauro, Trayanova Natalia A

机构信息

Alliance for Cardiovascular Diagnostic and Treatment Innovation (ADVANCE), Johns Hopkins University, Baltimore, 21224, USA.

Johns Hopkins University School of Medicine, Department of Biomedical Engineering, Baltimore, 21224, USA.

出版信息

Nat Cardiovasc Res. 2022 Apr;1(4):334-343. doi: 10.1038/s44161-022-00041-9. Epub 2022 Apr 7.

Abstract

Sudden cardiac death from arrhythmia is a major cause of mortality worldwide. Here, we develop a novel deep learning (DL) approach that blends neural networks and survival analysis to predict patient-specific survival curves from contrast-enhanced cardiac magnetic resonance images and clinical covariates for patients with ischemic heart disease. The DL-predicted survival curves offer accurate predictions at times up to 10 years and allow for estimation of uncertainty in predictions. The performance of this learning architecture was evaluated on multi-center internal validation data and tested on an independent test set, achieving concordance index of 0.83 and 0.74, and 10-year integrated Brier score of 0.12 and 0.14. We demonstrate that our DL approach with only raw cardiac images as input outperforms standard survival models constructed using clinical covariates. This technology has the potential to transform clinical decision-making by offering accurate and generalizable predictions of patient-specific survival probabilities of arrhythmic death over time.

摘要

心律失常导致的心脏性猝死是全球主要的死亡原因。在此,我们开发了一种新颖的深度学习(DL)方法,该方法将神经网络与生存分析相结合,以根据缺血性心脏病患者的对比增强心脏磁共振图像和临床协变量预测患者特异性生存曲线。DL预测的生存曲线在长达10年的时间内提供了准确的预测,并允许估计预测中的不确定性。这种学习架构的性能在多中心内部验证数据上进行了评估,并在独立测试集上进行了测试,一致性指数分别为0.83和0.74,10年综合Brier分数分别为0.12和0.14。我们证明,仅以原始心脏图像作为输入的DL方法优于使用临床协变量构建的标准生存模型。该技术有可能通过提供随时间变化的心律失常性死亡患者特异性生存概率的准确且可推广的预测,来改变临床决策。

相似文献

1
Arrhythmic sudden death survival prediction using deep learning analysis of scarring in the heart.
Nat Cardiovasc Res. 2022 Apr;1(4):334-343. doi: 10.1038/s44161-022-00041-9. Epub 2022 Apr 7.
2
Deep learning-based prognostic model using non-enhanced cardiac cine MRI for outcome prediction in patients with heart failure.
Eur Radiol. 2023 Nov;33(11):8203-8213. doi: 10.1007/s00330-023-09785-9. Epub 2023 Jun 7.
6
Deep learning-based prediction of major arrhythmic events in dilated cardiomyopathy: A proof of concept study.
PLoS One. 2024 Feb 29;19(2):e0297793. doi: 10.1371/journal.pone.0297793. eCollection 2024.
7
Does the SORG Algorithm Predict 5-year Survival in Patients with Chondrosarcoma? An External Validation.
Clin Orthop Relat Res. 2019 Oct;477(10):2296-2303. doi: 10.1097/CORR.0000000000000748.
10
Are Current Survival Prediction Tools Useful When Treating Subsequent Skeletal-related Events From Bone Metastases?
Clin Orthop Relat Res. 2024 Sep 1;482(9):1710-1721. doi: 10.1097/CORR.0000000000003030. Epub 2024 Mar 22.

引用本文的文献

1
Multimodal AI to forecast arrhythmic death in hypertrophic cardiomyopathy.
Nat Cardiovasc Res. 2025 Jul 2. doi: 10.1038/s44161-025-00679-1.
2
Cardiovascular imaging techniques for electrophysiologists.
Nat Cardiovasc Res. 2025 May;4(5):514-525. doi: 10.1038/s44161-025-00648-8. Epub 2025 May 13.
4
Radiomic Cardiac MRI Signatures for Predicting Ventricular Arrhythmias in Patients With Nonischemic Dilated Cardiomyopathy.
JACC Adv. 2025 Apr;4(4):101684. doi: 10.1016/j.jacadv.2025.101684. Epub 2025 Mar 23.
6
Artificial Intelligence in the Heart of Medicine: A Systematic Approach to Transforming Arrhythmia Care with Intelligent Systems.
Curr Cardiol Rev. 2025;21(4):e1573403X334095. doi: 10.2174/011573403X334095241205041550.
7
Deep-learning-driven optical coherence tomography analysis for cardiovascular outcome prediction in patients with acute coronary syndrome.
Eur Heart J Digit Health. 2024 Sep 27;5(6):692-701. doi: 10.1093/ehjdh/ztae067. eCollection 2024 Nov.
8
Prediction of sudden cardiac death using artificial intelligence: Current status and future directions.
Heart Rhythm. 2025 Mar;22(3):756-766. doi: 10.1016/j.hrthm.2024.09.003. Epub 2024 Sep 6.
10
Strain-controlled electrophysiological wave propagation alters scar-based substrate for ventricular tachycardia.
Front Physiol. 2024 Apr 9;15:1330157. doi: 10.3389/fphys.2024.1330157. eCollection 2024.

本文引用的文献

1
Anatomically informed deep learning on contrast-enhanced cardiac magnetic resonance imaging for scar segmentation and clinical feature extraction.
Cardiovasc Digit Health J. 2021 Nov 26;3(1):2-13. doi: 10.1016/j.cvdhj.2021.11.007. eCollection 2022 Feb.
2
Baseline and Dynamic Risk Predictors of Appropriate Implantable Cardioverter Defibrillator Therapy.
J Am Heart Assoc. 2020 Oct 20;9(20):e017002. doi: 10.1161/JAHA.120.017002. Epub 2020 Oct 7.
3
Substrate Spatial Complexity Analysis for the Prediction of Ventricular Arrhythmias in Patients With Ischemic Cardiomyopathy.
Circ Arrhythm Electrophysiol. 2020 Apr;13(4):e007975. doi: 10.1161/CIRCEP.119.007975. Epub 2020 Mar 18.
5
6
Deep Learning in Medicine-Promise, Progress, and Challenges.
JAMA Intern Med. 2019 Mar 1;179(3):293-294. doi: 10.1001/jamainternmed.2018.7117.
7
Epidemiology of Sudden Cardiac Death: Global and Regional Perspectives.
Heart Lung Circ. 2019 Jan;28(1):6-14. doi: 10.1016/j.hlc.2018.08.026. Epub 2018 Sep 24.
8
Arrhythmia detection using deep convolutional neural network with long duration ECG signals.
Comput Biol Med. 2018 Nov 1;102:411-420. doi: 10.1016/j.compbiomed.2018.09.009. Epub 2018 Sep 15.
9
On the Prospects for a (Deep) Learning Health Care System.
JAMA. 2018 Sep 18;320(11):1099-1100. doi: 10.1001/jama.2018.11103.
10
Deep Learning-A Technology With the Potential to Transform Health Care.
JAMA. 2018 Sep 18;320(11):1101-1102. doi: 10.1001/jama.2018.11100.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验