Houhou Rola, Quansah Elsie, Meyer-Zedler Tobias, Schmitt Michael, Hoffmann Franziska, Guntinas-Lichius Orlando, Popp Jürgen, Bocklitz Thomas
Institute of Physical Chemistry and Abbe Center of Photonics, Friedrich Schiller University, Helmholtzweg 4, 07743 Jena, Germany.
Leibniz Institute of Photonic Technology (Member of Leibniz Health Technologies), Albert-Einstein-Straße 9, 07745 Jena, Germany.
Biomed Opt Express. 2023 Jun 12;14(7):3259-3278. doi: 10.1364/BOE.477384. eCollection 2023 Jul 1.
Biophotonic multimodal imaging techniques provide deep insights into biological samples such as cells or tissues. However, the measurement time increases dramatically when high-resolution multimodal images (MM) are required. To address this challenge, mathematical methods can be used to shorten the acquisition time for such high-quality images. In this research, we compared standard methods, e.g., the median filter method and the phase retrieval method via the Gerchberg-Saxton algorithm with artificial intelligence (AI) based methods using MM images of head and neck tissues. The AI methods include two approaches: the first one is a transfer learning-based technique that uses the pre-trained network DnCNN. The second approach is the training of networks using augmented head and neck MM images. In this manner, we compared the Noise2Noise network, the MIRNet network, and our deep learning network namely incSRCNN, which is derived from the super-resolution convolutional neural network and inspired by the inception network. These methods reconstruct improved images using measured low-quality (LQ) images, which were measured in approximately 2 seconds. The evaluation was performed on artificial LQ images generated by degrading high-quality (HQ) images measured in 8 seconds using Poisson noise. The results showed the potential of using deep learning on these multimodal images to improve the data quality and reduce the acquisition time. Our proposed network has the advantage of having a simple architecture compared with similar-performing but highly parametrized networks DnCNN, MIRNet, and Noise2Noise.
生物光子多模态成像技术能够深入洞察细胞或组织等生物样本。然而,当需要高分辨率多模态图像(MM)时,测量时间会大幅增加。为应对这一挑战,可以使用数学方法来缩短此类高质量图像的采集时间。在本研究中,我们将标准方法,如中值滤波法和通过格尔希贝格 - 萨克斯顿算法的相位检索法,与基于人工智能(AI)的方法进行了比较,这些方法使用了头颈部组织的MM图像。人工智能方法包括两种途径:第一种是基于迁移学习的技术,使用预训练网络DnCNN。第二种途径是使用增强的头颈部MM图像训练网络。通过这种方式,我们比较了Noise2Noise网络、MIRNet网络以及我们的深度学习网络incSRCNN,incSRCNN源自超分辨率卷积神经网络并受初始网络启发。这些方法使用测量得到的低质量(LQ)图像重建改进后的图像,这些低质量图像的测量时间约为2秒。评估是在通过对使用泊松噪声在8秒内测量得到的高质量(HQ)图像进行降质处理而生成的人工LQ图像上进行的。结果显示了在这些多模态图像上使用深度学习以提高数据质量和减少采集时间的潜力。与性能相似但参数众多的网络DnCNN、MIRNet和Noise2Noise相比,我们提出的网络具有架构简单的优势。