Suppr超能文献

用于非线性多模态图像重建的去噪工具比较

Comparison of denoising tools for the reconstruction of nonlinear multimodal images.

作者信息

Houhou Rola, Quansah Elsie, Meyer-Zedler Tobias, Schmitt Michael, Hoffmann Franziska, Guntinas-Lichius Orlando, Popp Jürgen, Bocklitz Thomas

机构信息

Institute of Physical Chemistry and Abbe Center of Photonics, Friedrich Schiller University, Helmholtzweg 4, 07743 Jena, Germany.

Leibniz Institute of Photonic Technology (Member of Leibniz Health Technologies), Albert-Einstein-Straße 9, 07745 Jena, Germany.

出版信息

Biomed Opt Express. 2023 Jun 12;14(7):3259-3278. doi: 10.1364/BOE.477384. eCollection 2023 Jul 1.

Abstract

Biophotonic multimodal imaging techniques provide deep insights into biological samples such as cells or tissues. However, the measurement time increases dramatically when high-resolution multimodal images (MM) are required. To address this challenge, mathematical methods can be used to shorten the acquisition time for such high-quality images. In this research, we compared standard methods, e.g., the median filter method and the phase retrieval method via the Gerchberg-Saxton algorithm with artificial intelligence (AI) based methods using MM images of head and neck tissues. The AI methods include two approaches: the first one is a transfer learning-based technique that uses the pre-trained network DnCNN. The second approach is the training of networks using augmented head and neck MM images. In this manner, we compared the Noise2Noise network, the MIRNet network, and our deep learning network namely incSRCNN, which is derived from the super-resolution convolutional neural network and inspired by the inception network. These methods reconstruct improved images using measured low-quality (LQ) images, which were measured in approximately 2 seconds. The evaluation was performed on artificial LQ images generated by degrading high-quality (HQ) images measured in 8 seconds using Poisson noise. The results showed the potential of using deep learning on these multimodal images to improve the data quality and reduce the acquisition time. Our proposed network has the advantage of having a simple architecture compared with similar-performing but highly parametrized networks DnCNN, MIRNet, and Noise2Noise.

摘要

生物光子多模态成像技术能够深入洞察细胞或组织等生物样本。然而,当需要高分辨率多模态图像(MM)时,测量时间会大幅增加。为应对这一挑战,可以使用数学方法来缩短此类高质量图像的采集时间。在本研究中,我们将标准方法,如中值滤波法和通过格尔希贝格 - 萨克斯顿算法的相位检索法,与基于人工智能(AI)的方法进行了比较,这些方法使用了头颈部组织的MM图像。人工智能方法包括两种途径:第一种是基于迁移学习的技术,使用预训练网络DnCNN。第二种途径是使用增强的头颈部MM图像训练网络。通过这种方式,我们比较了Noise2Noise网络、MIRNet网络以及我们的深度学习网络incSRCNN,incSRCNN源自超分辨率卷积神经网络并受初始网络启发。这些方法使用测量得到的低质量(LQ)图像重建改进后的图像,这些低质量图像的测量时间约为2秒。评估是在通过对使用泊松噪声在8秒内测量得到的高质量(HQ)图像进行降质处理而生成的人工LQ图像上进行的。结果显示了在这些多模态图像上使用深度学习以提高数据质量和减少采集时间的潜力。与性能相似但参数众多的网络DnCNN、MIRNet和Noise2Noise相比,我们提出的网络具有架构简单的优势。

相似文献

1
Comparison of denoising tools for the reconstruction of nonlinear multimodal images.
Biomed Opt Express. 2023 Jun 12;14(7):3259-3278. doi: 10.1364/BOE.477384. eCollection 2023 Jul 1.
2
Low-dose CT reconstruction with Noise2Noise network and testing-time fine-tuning.
Med Phys. 2021 Dec;48(12):7657-7672. doi: 10.1002/mp.15101. Epub 2021 Nov 17.
3
A Generative Adversarial Network technique for high-quality super-resolution reconstruction of cardiac magnetic resonance images.
Magn Reson Imaging. 2022 Jan;85:153-160. doi: 10.1016/j.mri.2021.10.033. Epub 2021 Oct 24.
5
A convolutional neural network for ultra-low-dose CT denoising and emphysema screening.
Med Phys. 2019 Sep;46(9):3941-3950. doi: 10.1002/mp.13666. Epub 2019 Jul 17.
7
Denoising Tc-99m DMSA images using Denoising Convolutional Neural Network with comparison to a Block Matching Filter.
Nucl Med Commun. 2023 Aug 1;44(8):682-690. doi: 10.1097/MNM.0000000000001712. Epub 2023 Jun 5.
8
Introducing Swish and Parallelized Blind Removal Improves the Performance of a Convolutional Neural Network in Denoising MR Images.
Magn Reson Med Sci. 2021 Dec 1;20(4):410-424. doi: 10.2463/mrms.mp.2020-0073. Epub 2021 Feb 11.
9
Quantitative evaluation of deep convolutional neural network-based image denoising for low-dose computed tomography.
Vis Comput Ind Biomed Art. 2021 Jul 25;4(1):21. doi: 10.1186/s42492-021-00087-9.

本文引用的文献

1
Phase retrieval based on deep learning in grating interferometer.
Sci Rep. 2022 Apr 25;12(1):6739. doi: 10.1038/s41598-022-10551-y.
2
Learning Enriched Features for Fast Image Restoration and Enhancement.
IEEE Trans Pattern Anal Mach Intell. 2023 Feb;45(2):1934-1948. doi: 10.1109/TPAMI.2022.3167175. Epub 2023 Jan 6.
4
Automated label-free detection of injured neuron with deep learning by two-photon microscopy.
J Biophotonics. 2020 Jan;13(1):e201960062. doi: 10.1002/jbio.201960062. Epub 2019 Oct 30.
5
Deep iterative reconstruction for phase retrieval.
Appl Opt. 2019 Jul 10;58(20):5422-5431. doi: 10.1364/AO.58.005422.
6
Beyond a Gaussian Denoiser: Residual Learning of Deep CNN for Image Denoising.
IEEE Trans Image Process. 2017 Jul;26(7):3142-3155. doi: 10.1109/TIP.2017.2662206. Epub 2017 Feb 1.
7
Detection and Discrimination of Non-Melanoma Skin Cancer by Multimodal Imaging.
Healthcare (Basel). 2013 Oct 17;1(1):64-83. doi: 10.3390/healthcare1010064.
8
Image Super-Resolution Using Deep Convolutional Networks.
IEEE Trans Pattern Anal Mach Intell. 2016 Feb;38(2):295-307. doi: 10.1109/TPAMI.2015.2439281.
9
Multimodal Imaging Spectroscopy of Tissue.
Annu Rev Anal Chem (Palo Alto Calif). 2015;8:359-87. doi: 10.1146/annurev-anchem-071114-040352. Epub 2015 Jun 11.
10
CT chest and gantry rotation time: does the rotation time influence image quality?
Acta Radiol. 2015 Aug;56(8):950-4. doi: 10.1177/0284185114544242. Epub 2014 Aug 19.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验