Laboratory of Plant Physiology and Biophysics, University of Glasgow, Glasgow, UK.
Plant Cell Environ. 2023 Nov;46(11):3644-3658. doi: 10.1111/pce.14674. Epub 2023 Jul 27.
Gas exchange across the stomatal pores of leaves is a focal point in studies of plant-environmental relations. Stomata regulate atmospheric exchange with the inner air spaces of the leaf. They open to allow CO entry for photosynthesis and close to minimize water loss. Models that focus on the phenomenology of stomatal conductance generally omit the mechanics of the guard cells that regulate the pore aperture. The OnGuard platform fills this gap and offers a truly mechanistic approach with which to analyse stomatal gas exchange, whole-plant carbon assimilation and water-use efficiency. Previously, OnGuard required specialist knowledge of membrane transport, signalling and metabolism. Here we introduce OnGuard3e, a software package accessible to ecophysiologists and membrane biologists alike. We provide a brief guide to its use and illustrate how the package can be applied to explore and analyse stomatal conductance, assimilation and water use efficiencies, addressing a range of experimental questions with truly predictive outputs.
气体在叶片气孔间的交换是植物与环境关系研究的重点。气孔调节着与叶片内部气腔之间的大气交换。它们张开以允许 CO2 进入进行光合作用,关闭以最小化水分损失。关注气孔导度现象学的模型通常忽略了调节气孔孔径的保卫细胞的力学。OnGuard 平台填补了这一空白,提供了一种真正的机械方法来分析气孔气体交换、植物整体碳同化和水分利用效率。以前,OnGuard 需要对膜运输、信号转导和代谢有专业知识。在这里,我们介绍了 OnGuard3e,这是一个生理生态学家和膜生物学家都可以使用的软件包。我们提供了一个简短的使用指南,并说明了如何应用该软件包来探索和分析气孔导度、同化和水分利用效率,用真正的预测性输出解决一系列实验问题。