Laboratory of Plant Physiology and Biophysics, University of Glasgow, Glasgow G12 8QQ, United Kingdom.
Biological Sciences, University of Essex, Colchester CO4 3SQ, United Kingdom.
Plant Cell. 2017 Nov;29(11):2921-2939. doi: 10.1105/tpc.17.00694. Epub 2017 Nov 1.
Stomatal movements depend on the transport and metabolism of osmotic solutes that drive reversible changes in guard cell volume and turgor. These processes are defined by a deep knowledge of the identities of the key transporters and of their biophysical and regulatory properties, and have been modeled successfully with quantitative kinetic detail at the cellular level. Transpiration of the leaf and canopy, by contrast, is described by quasilinear, empirical relations for the inputs of atmospheric humidity, CO, and light, but without connection to guard cell mechanics. Until now, no framework has been available to bridge this gap and provide an understanding of their connections. Here, we introduce OnGuard2, a quantitative systems platform that utilizes the molecular mechanics of ion transport, metabolism, and signaling of the guard cell to define the water relations and transpiration of the leaf. We show that OnGuard2 faithfully reproduces the kinetics of stomatal conductance in and its dependence on vapor pressure difference (VPD) and on water feed to the leaf. OnGuard2 also predicted with VPD unexpected alterations in K channel activities and changes in stomatal conductance of the Cl channel and H-ATPase mutants, which we verified experimentally. OnGuard2 thus bridges the micro-macro divide, offering a powerful tool with which to explore the links between guard cell homeostasis, stomatal dynamics, and foliar transpiration.
气孔运动依赖于渗透溶质的运输和代谢,这些溶质驱动保卫细胞体积和膨压的可逆变化。这些过程的定义是基于对关键转运蛋白的身份及其生物物理和调节特性的深刻理解,并已在细胞水平上成功地用定量动力学细节进行了建模。相比之下,叶片和冠层的蒸腾作用则由大气湿度、CO2 和光的输入的准线性经验关系来描述,但与保卫细胞力学没有联系。到目前为止,还没有一个框架可以弥合这一差距,并提供对它们之间联系的理解。在这里,我们引入了 OnGuard2,这是一个定量系统平台,利用保卫细胞的离子运输、代谢和信号转导的分子力学来定义叶片的水分关系和蒸腾作用。我们表明,OnGuard2 忠实地再现了 中的气孔导度动力学及其对蒸汽压差 (VPD) 和叶片供水的依赖性。OnGuard2 还预测了 VPD 对 K 通道活性的意外改变以及 Cl 通道和 H-ATPase 突变体的气孔导度的变化,我们通过实验验证了这些变化。因此,OnGuard2 弥合了微观-宏观之间的鸿沟,提供了一个强大的工具,用于探索保卫细胞内稳态、气孔动态和叶片蒸腾之间的联系。