Suppr超能文献

具有注意力机制的时间依赖学习 CNN 用于 MI-EEG 解码。

A Temporal Dependency Learning CNN With Attention Mechanism for MI-EEG Decoding.

出版信息

IEEE Trans Neural Syst Rehabil Eng. 2023;31:3188-3200. doi: 10.1109/TNSRE.2023.3299355. Epub 2023 Aug 9.

Abstract

Deep learning methods have been widely explored in motor imagery (MI)-based brain computer interface (BCI) systems to decode electroencephalography (EEG) signals. However, most studies fail to fully explore temporal dependencies among MI-related patterns generated in different stages during MI tasks, resulting in limited MI-EEG decoding performance. Apart from feature extraction, learning temporal dependencies is equally important to develop a subject-specific MI-based BCI because every subject has their own way of performing MI tasks. In this paper, a novel temporal dependency learning convolutional neural network (CNN) with attention mechanism is proposed to address MI-EEG decoding. The network first learns spatial and spectral information from multi-view EEG data via the spatial convolution block. Then, a series of non-overlapped time windows is employed to segment the output data, and the discriminative feature is further extracted from each time window to capture MI-related patterns generated in different stages. Furthermore, to explore temporal dependencies among discriminative features in different time windows, we design a temporal attention module that assigns different weights to features in various time windows and fuses them into more discriminative features. The experimental results on the BCI Competition IV-2a (BCIC-IV-2a) and OpenBMI datasets show that our proposed network outperforms the state-of-the-art algorithms and achieves the average accuracy of 79.48%, improved by 2.30% on the BCIC-IV-2a dataset. We demonstrate that learning temporal dependencies effectively improves MI-EEG decoding performance. The code is available at https://github.com/Ma-Xinzhi/LightConvNet.

摘要

深度学习方法已广泛应用于基于运动想象(MI)的脑机接口(BCI)系统,以对脑电图(EEG)信号进行解码。然而,大多数研究未能充分探索在 MI 任务的不同阶段产生的与 MI 相关模式之间的时间依赖性,导致 MI-EEG 解码性能有限。除了特征提取外,学习时间依赖性对于开发基于特定个体的 MI-BCI 同样重要,因为每个个体都有自己执行 MI 任务的方式。在本文中,提出了一种具有注意力机制的新的时间依赖性学习卷积神经网络(CNN),用于解决 MI-EEG 解码问题。该网络首先通过空间卷积块从多视图 EEG 数据中学习空间和频谱信息。然后,使用一系列非重叠的时间窗口来分割输出数据,并从每个时间窗口中进一步提取判别特征,以捕获在不同阶段产生的与 MI 相关的模式。此外,为了探索不同时间窗口中判别特征之间的时间依赖性,我们设计了一个时间注意力模块,为不同时间窗口中的特征分配不同的权重,并将它们融合为更具判别力的特征。在 BCI 竞赛 IV-2a(BCIC-IV-2a)和 OpenBMI 数据集上的实验结果表明,我们提出的网络优于最新算法,在 BCIC-IV-2a 数据集上的平均准确率为 79.48%,提高了 2.30%。我们证明了学习时间依赖性可以有效地提高 MI-EEG 解码性能。代码可在 https://github.com/Ma-Xinzhi/LightConvNet 上获得。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验