Suppr超能文献

基于动态多尺度卷积和多头时间注意力的运动想象分类

[Motor imagery classification based on dynamic multi-scale convolution and multi-head temporal attention].

作者信息

Xiao Nan, Li Ming'ai

机构信息

College of Information Technology, Beijing University of Technology, Beijing 100124, P. R. China.

出版信息

Sheng Wu Yi Xue Gong Cheng Xue Za Zhi. 2025 Aug 25;42(4):678-685. doi: 10.7507/1001-5515.202408051.

Abstract

Convolutional neural networks (CNNs) are renowned for their excellent representation learning capabilities and have become a mainstream model for motor imagery based electroencephalogram (MI-EEG) signal classification. However, MI-EEG exhibits strong inter-individual variability, which may lead to a decline in classification performance. To address this issue, this paper proposes a classification model based on dynamic multi-scale CNN and multi-head temporal attention (DMSCMHTA). The model first applies multi-band filtering to the raw MI-EEG signals and inputs the results into the feature extraction module. Then, it uses a dynamic multi-scale CNN to capture temporal features while adjusting attention weights, followed by spatial convolution to extract spatiotemporal feature sequences. Next, the model further optimizes temporal correlations through time dimensionality reduction and a multi-head attention mechanism to generate more discriminative features. Finally, MI classification is completed under the supervision of cross-entropy loss and center loss. Experiments show that the proposed model achieves average accuracies of 80.32% and 90.81% on BCI Competition IV datasets 2a and 2b, respectively. The results indicate that DMSCMHTA can adaptively extract personalized spatiotemporal features and outperforms current mainstream methods.

摘要

卷积神经网络(CNN)以其出色的表征学习能力而闻名,并已成为基于运动想象的脑电图(MI-EEG)信号分类的主流模型。然而,MI-EEG表现出很强的个体间变异性,这可能导致分类性能下降。为了解决这个问题,本文提出了一种基于动态多尺度CNN和多头时间注意力(DMSCMHTA)的分类模型。该模型首先对原始MI-EEG信号进行多波段滤波,并将结果输入到特征提取模块中。然后,它使用动态多尺度CNN在调整注意力权重的同时捕捉时间特征,接着进行空间卷积以提取时空特征序列。接下来,该模型通过时间降维和多头注意力机制进一步优化时间相关性,以生成更具判别力的特征。最后,在交叉熵损失和中心损失的监督下完成MI分类。实验表明,所提出的模型在BCI竞赛IV数据集2a和2b上分别达到了80.32%和90.81%的平均准确率。结果表明,DMSCMHTA能够自适应地提取个性化的时空特征,并且优于当前的主流方法。

相似文献

本文引用的文献

2
A Temporal Dependency Learning CNN With Attention Mechanism for MI-EEG Decoding.具有注意力机制的时间依赖学习 CNN 用于 MI-EEG 解码。
IEEE Trans Neural Syst Rehabil Eng. 2023;31:3188-3200. doi: 10.1109/TNSRE.2023.3299355. Epub 2023 Aug 9.
4
EEG Conformer: Convolutional Transformer for EEG Decoding and Visualization.脑电图适配模型:用于脑电图解码与可视化的卷积变换器
IEEE Trans Neural Syst Rehabil Eng. 2023;31:710-719. doi: 10.1109/TNSRE.2022.3230250. Epub 2023 Feb 2.
8
[Progress of classification algorithms for motor imagery electroencephalogram signals].[运动想象脑电信号分类算法研究进展]
Sheng Wu Yi Xue Gong Cheng Xue Za Zhi. 2021 Oct 25;38(5):995-1002. doi: 10.7507/1001-5515.202101089.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验