Xiao Nan, Li Ming'ai
College of Information Technology, Beijing University of Technology, Beijing 100124, P. R. China.
Sheng Wu Yi Xue Gong Cheng Xue Za Zhi. 2025 Aug 25;42(4):678-685. doi: 10.7507/1001-5515.202408051.
Convolutional neural networks (CNNs) are renowned for their excellent representation learning capabilities and have become a mainstream model for motor imagery based electroencephalogram (MI-EEG) signal classification. However, MI-EEG exhibits strong inter-individual variability, which may lead to a decline in classification performance. To address this issue, this paper proposes a classification model based on dynamic multi-scale CNN and multi-head temporal attention (DMSCMHTA). The model first applies multi-band filtering to the raw MI-EEG signals and inputs the results into the feature extraction module. Then, it uses a dynamic multi-scale CNN to capture temporal features while adjusting attention weights, followed by spatial convolution to extract spatiotemporal feature sequences. Next, the model further optimizes temporal correlations through time dimensionality reduction and a multi-head attention mechanism to generate more discriminative features. Finally, MI classification is completed under the supervision of cross-entropy loss and center loss. Experiments show that the proposed model achieves average accuracies of 80.32% and 90.81% on BCI Competition IV datasets 2a and 2b, respectively. The results indicate that DMSCMHTA can adaptively extract personalized spatiotemporal features and outperforms current mainstream methods.
卷积神经网络(CNN)以其出色的表征学习能力而闻名,并已成为基于运动想象的脑电图(MI-EEG)信号分类的主流模型。然而,MI-EEG表现出很强的个体间变异性,这可能导致分类性能下降。为了解决这个问题,本文提出了一种基于动态多尺度CNN和多头时间注意力(DMSCMHTA)的分类模型。该模型首先对原始MI-EEG信号进行多波段滤波,并将结果输入到特征提取模块中。然后,它使用动态多尺度CNN在调整注意力权重的同时捕捉时间特征,接着进行空间卷积以提取时空特征序列。接下来,该模型通过时间降维和多头注意力机制进一步优化时间相关性,以生成更具判别力的特征。最后,在交叉熵损失和中心损失的监督下完成MI分类。实验表明,所提出的模型在BCI竞赛IV数据集2a和2b上分别达到了80.32%和90.81%的平均准确率。结果表明,DMSCMHTA能够自适应地提取个性化的时空特征,并且优于当前的主流方法。