Suppr超能文献

美国三大波疫情期间健康社会决定因素与 COVID-19 发病率和死亡率的纵向差异。

Longitudinal disparities in social determinants of health and COVID-19 incidence and mortality in the United States from the three largest waves of the pandemic.

机构信息

Polis Center, Indiana University Purdue University Indianapolis (IUPUI), Indianapolis, USA.

Department of Geosciences, Mississippi State University, Starkville, USA.

出版信息

Spat Spatiotemporal Epidemiol. 2023 Aug;46:100604. doi: 10.1016/j.sste.2023.100604. Epub 2023 Jul 17.

Abstract

The United States experienced at least five COVID-19 waves linked with different mutated SARS-CoV-2 variants including Alpha, Delta and Omicron. In addition to the variants, the intensity, geographical distribution, and risk factors related to those waves also vary within socio-demographic characteristics and timeframes. In this project, we have examined the spatial and temporal pattern of COVID-19 in the USA and its associations with Social Determinants of Health (SDoH) by utilizing the County Health Rankings & Roadmaps (CHRR) dataset. Our epidemiologic investigation at the county level showed that the burden of COVID-19 cases and deaths is higher in counties with high percentages of smoking, number of preventable hospital stays, primary care physician rate, the average daily density of PM and percentages of high proportions of Hispanic residents. In addition, the analysis also demonstrated that COVID-19 incidence and mortality had distinct characteristics in their association with SDoH variables. For example, the percentages of the population 65 and older had negative associations with incidence while a significant positive association with mortality. In addition to the elderly population, median household income, unemployment, and number of drug overdose deaths showed a mixed association with COVID-19 incidence and mortality. Our findings validate several influential factors found in the existing social epidemiology literature and highlight temporal associations between SDoH variables and COVID-19 incidence and mortality not yet frequently studied.

摘要

美国经历了至少五次与不同突变的 SARS-CoV-2 变体相关的 COVID-19 浪潮,包括 Alpha、Delta 和奥密克戎。除了变体之外,这些浪潮的强度、地理分布和与变体相关的风险因素也因社会人口特征和时间框架而异。在这个项目中,我们利用县卫生排名和路线图 (CHRR) 数据集,研究了美国 COVID-19 的空间和时间模式及其与健康社会决定因素 (SDoH) 的关联。我们在县级进行的流行病学调查显示,吸烟比例高、可预防住院人数、初级保健医生比例、PM 日均密度和西班牙裔居民高比例的县的 COVID-19 病例和死亡负担更高。此外,分析还表明,COVID-19 的发病率和死亡率与 SDoH 变量的关联具有明显的特征。例如,65 岁及以上人口比例与发病率呈负相关,而与死亡率呈显著正相关。除了老年人口外,家庭中位数收入、失业率和药物过量死亡人数与 COVID-19 的发病率和死亡率呈混合关联。我们的研究结果验证了现有社会流行病学文献中发现的几个有影响力的因素,并强调了 SDoH 变量与 COVID-19 发病率和死亡率之间尚未经常研究的时间关联。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验