Key Lab of Neuroscience, School of Basic Medical Sciences, Guangzhou Medical University, Guangzhou, Guangdong, 511436, China.
Department of Human Genetics, Donders Institute for Brain, Cognition and Behaviour, Radboud University Medical Center, 6525GA, Nijmegen, the Netherlands.
Mol Psychiatry. 2023 Aug;28(8):3444-3458. doi: 10.1038/s41380-023-02197-7. Epub 2023 Jul 27.
Adverse experiences in early life can shape neuronal structures and synaptic function in multiple brain regions, leading to deficits of distinct cognitive functions later in life. Focusing on the pyramidal cells of the prelimbic cortex (PrL), a main subregion of the medial prefrontal cortex, the impact of early-life adversity (ELA) was investigated in a well-established animal model generated by changing the rearing environment during postnatal days 2 to 9 (P2-P9), a sensitive developmental period. ELA has enduring detrimental impacts on the dendritic spines of PrL pyramidal cells, which is most apparent in a spatially circumscribed region. Specifically, ELA affects both thin and mushroom-type spines, and ELA-provoked loss of spines is observed on selective dendritic segments of PrL pyramidal cells in layers II-III and V-VI. Reduced postsynaptic puncta represented by postsynaptic density protein-95 (PSD-95), but not synaptophysin-labelled presynaptic puncta, in ELA mice supports the selective loss of spines in the PrL. Correlation analysis indicates that loss of spines and postsynaptic puncta in the PrL contributes to the poor spatial working memory of ELA mice, and thin spines may play a major role in working memory performance. To further understand whether loss of spines affects glutamatergic transmission, AMPA- and NMDA-receptor-mediated synaptic currents (EPSCs) were recorded in a group of Thy1-expressing PrL pyramidal cells. ELA mice exhibited a depressed glutamatergic transmission, which is accompanied with a decreased expression of GluR1 and NR1 subunits in the PrL. Finally, upregulating the activation of Thy1-expressing PrL pyramidal cells via excitatory DREADDs can efficiently improve the working memory performance of ELA mice in a T-maze-based task, indicating the potential of a chemogenetic approach in restoring ELA-provoked memory deficits.
早期生活中的不良经历会影响多个大脑区域的神经元结构和突触功能,导致成年后出现特定认知功能的缺陷。本研究聚焦于前额皮质内侧前脑区(mPFC)的主要亚区——前额叶皮层(PrL)中的锥体神经元,采用新生后第 2 至第 9 天(P2-P9)改变饲养环境的方法,建立了一种成熟的动物模型,以此研究早期生活逆境(ELA)对 PrL 锥体神经元树突棘的影响。ELA 对 PrL 锥体神经元树突棘产生持久的有害影响,这种影响在空间上受到限制。具体来说,ELA 影响薄型和蘑菇型树突棘,并且在 PrL 锥体神经元的 II-III 层和 V-VI 层的选择性树突段观察到 ELA 引起的树突棘丢失。ELA 小鼠中突触后密度蛋白 95(PSD-95)代表的突触后小泡减少,但突触前小泡标记的突触小泡没有减少,这支持了 PrL 中树突棘的选择性丢失。相关性分析表明,PrL 中树突棘和突触后小泡的丢失导致 ELA 小鼠空间工作记忆能力下降,而薄型树突棘可能在工作记忆表现中起主要作用。为了进一步了解树突棘丢失是否影响谷氨酸能传递,在一组表达 Thy1 的 PrL 锥体神经元中记录 AMPA 和 NMDA 受体介导的突触电流(EPSCs)。ELA 小鼠表现出谷氨酸能传递的抑制,这伴随着 PrL 中 GluR1 和 NR1 亚基表达的减少。最后,通过兴奋性 DREADDs 上调表达 Thy1 的 PrL 锥体神经元的激活可以有效地改善 T 迷宫任务中 ELA 小鼠的工作记忆表现,这表明化学遗传方法在恢复 ELA 引起的记忆缺陷方面具有潜力。