Suppr超能文献

基于肌腱驱动的高自由度欠驱动机械手仿真平台的课程强化学习

Curriculum-reinforcement learning on simulation platform of tendon-driven high-degree of freedom underactuated manipulator.

作者信息

Or Keung, Wu Kehua, Nakano Kazashi, Ikeda Masahiro, Ando Mitsuhito, Kuniyoshi Yasuo, Niiyama Ryuma

机构信息

School of Science and Technology, Meiji University, Kawasaki, Japan.

Graduate School of Information Science and Technology, The University of Tokyo, Tokyo, Japan.

出版信息

Front Robot AI. 2023 Jul 12;10:1066518. doi: 10.3389/frobt.2023.1066518. eCollection 2023.

Abstract

A high degree of freedom (DOF) benefits manipulators by presenting various postures when reaching a target. Using a tendon-driven system with an underactuated structure can provide flexibility and weight reduction to such manipulators. The design and control of such a composite system are challenging owing to its complicated architecture and modeling difficulties. In our previous study, we developed a tendon-driven, high-DOF underactuated manipulator inspired from an ostrich neck referred to as the Robostrich arm. This study particularly focused on the control problems and simulation development of such a tendon-driven high-DOF underactuated manipulator. We proposed a curriculum-based reinforcement-learning approach. Inspired by human learning, progressing from simple to complex tasks, the Robostrich arm can obtain manipulation abilities by step-by-step reinforcement learning ranging from simple position control tasks to practical application tasks. In addition, an approach was developed to simulate tendon-driven manipulation with a complicated structure. The results show that the Robostrich arm can continuously reach various targets and simultaneously maintain its tip at the desired orientation while mounted on a mobile platform in the presence of perturbation. These results show that our system can achieve flexible manipulation ability even if vibrations are presented by locomotion.

摘要

高度自由度(DOF)通过在到达目标时呈现各种姿势,使操纵器受益。使用具有欠驱动结构的腱驱动系统可为此类操纵器提供灵活性并减轻重量。由于其复杂的架构和建模困难,这种复合系统的设计和控制具有挑战性。在我们之前的研究中,我们开发了一种受鸵鸟颈部启发的腱驱动、高自由度欠驱动操纵器,称为Robostrich臂。本研究特别关注这种腱驱动高自由度欠驱动操纵器的控制问题和仿真开发。我们提出了一种基于课程的强化学习方法。受人类学习从简单到复杂任务的启发,Robostrich臂可以通过从简单位置控制任务到实际应用任务的逐步强化学习来获得操纵能力。此外,还开发了一种方法来模拟具有复杂结构的腱驱动操纵。结果表明,Robostrich臂在存在扰动的情况下安装在移动平台上时,可以连续到达各种目标,并同时将其末端保持在所需的方向。这些结果表明,即使运动产生振动,我们的系统也能实现灵活的操纵能力。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验