Tkachenko Yurii, Khmyz Volodymyr, Buta Andrii, Isaev Dmytro, Maximyuk Oleksandr, Krishtal Oleg
Bogomoletz Institute of Physiology, National Academy of Sciences of Ukraine, Kyiv, Ukraine.
Front Cell Neurosci. 2023 Jul 12;17:1131661. doi: 10.3389/fncel.2023.1131661. eCollection 2023.
Tissue acidification causes sustained activation of primary nociceptors, which causes pain. In mammals, acid-sensing ion channels (ASICs) are the primary acid sensors; however, Na/H exchangers (NHEs) and TRPV1 receptors also contribute to tissue acidification sensing. ASICs, NHEs, and TRPV1 receptors are found to be expressed in nociceptive nerve fibers. ASIC inhibitors reduce peripheral acid-induced hyperalgesia and suppress inflammatory pain. Also, it was shown that pharmacological inhibition of NHE1 promotes nociceptive behavior in acute pain models, whereas inhibition of TRPV1 receptors gives relief. The murine skin-nerve preparation was used in this study to assess the activation of native polymodal nociceptors by mild acidification (pH 6.1). We have found that diminazene, a well-known antagonist of ASICs did not suppress pH-induced activation of CMH-fibers at concentrations as high as 25 μM. Moreover, at 100 μM, it induces the potentiation of the fibers' response to acidic pH. At the same time, this concentration virtually completely inhibited ASIC currents in mouse dorsal root ganglia (DRG) neurons (IC = 17.0 ± 4.5 μM). Non-selective ASICs and NHEs inhibitor EIPA (5-(N-ethyl-N-isopropyl)amiloride) at 10 μM, as well as selective NHE1 inhibitor zoniporide at 0.5 μM induced qualitatively the same effects as 100 μM of diminazene. Our results indicate that excitation of afferent nerve terminals induced by mild acidification occurs mainly due to the NHE1, rather than acid-sensing ion channels. At high concentrations, diminazene acts as a weak blocker of the NHE. It lacks chemical similarity with amiloride, EIPA, and zoniporide, so it may represent a novel structural motif for the development of NHE antagonists. However, the effect of diminazene on the acid-induced excitation of primary nociceptors remains enigmatic and requires additional investigations.
组织酸化会导致初级伤害感受器持续激活,进而引发疼痛。在哺乳动物中,酸敏感离子通道(ASICs)是主要的酸传感器;然而,钠氢交换体(NHEs)和瞬时受体电位香草酸亚型1(TRPV1)受体也参与组织酸化感知。研究发现,ASICs、NHEs和TRPV1受体在伤害性神经纤维中表达。ASIC抑制剂可减轻外周酸诱导的痛觉过敏并抑制炎性疼痛。此外,研究表明,在急性疼痛模型中,对NHE1的药理抑制会促进伤害性行为,而抑制TRPV1受体则可缓解疼痛。本研究使用小鼠皮肤-神经标本评估轻度酸化(pH 6.1)对天然多模式伤害感受器的激活作用。我们发现,作为知名ASIC拮抗剂的地美硝唑,在高达25 μM的浓度下并未抑制pH诱导的CMH纤维激活。此外,在100 μM时,它会增强纤维对酸性pH的反应。与此同时,该浓度几乎完全抑制了小鼠背根神经节(DRG)神经元中的ASIC电流(IC = 17.0 ± 4.5 μM)。10 μM的非选择性ASICs和NHEs抑制剂5-(N-乙基-N-异丙基)氨氯吡脒(EIPA)以及0.5 μM的选择性NHE1抑制剂唑尼泊ide诱导出了与100 μM地美硝唑定性相同的效果。我们的结果表明,轻度酸化诱导的传入神经末梢兴奋主要是由于NHE1,而非酸敏感离子通道。在高浓度下,地美硝唑作为NHE的弱阻滞剂起作用。它与氨氯吡脒、EIPA和唑尼泊ide缺乏化学相似性,因此可能代表了一种用于开发NHE拮抗剂的新型结构基序。然而,地美硝唑对酸诱导的初级伤害感受器兴奋的作用仍然难以捉摸,需要进一步研究。