Guo Shuyi, Yang Jingjing
medRxiv. 2023 Jul 12:2023.07.06.23292336. doi: 10.1101/2023.07.06.23292336.
Transcriptome-wide association study (TWAS) is an influential tool for identifying novel genes associated with complex diseases, where their genetic effects may be mediated through transcriptome. TWAS utilizes reference genetic and transcriptomic data to estimate genetic effect sizes on expression quantitative traits of target genes (i.e., effect sizes of a broad sense of expression quantitative trait loci, eQTL). These estimated effect sizes are then employed as variant weights in burden gene-based association test statistics, facilitating the mapping of risk genes for complex diseases with genome-wide association study (GWAS) data. However, most existing TWAS of Alzheimer's disease (AD) dementia have primarily focused on -eQTL, disregarding potential -eQTL. To overcome this limitation, we applied the Bayesian Genome-wide TWAS (BGW-TWAS) method which incorporated both - and -eQTL of brain and blood tissues to enhance mapping risk genes for AD dementia.
We first applied BGW-TWAS to the Genotype-Tissue Expression (GTEx) V8 dataset to estimate - and -eQTL effect sizes of the prefrontal cortex, cortex, and whole blood tissues. Subsequently, estimated eQTL effect sizes were integrated with the summary data of the most recent GWAS of AD dementia to obtain BGW-TWAS (i.e., gene-based association test) p-values of AD dementia per tissue type. Finally, we used the aggregated Cauchy association test to combine TWAS p-values across three tissues to obtain omnibus TWAS p-values per gene.
We identified 37 genes in prefrontal cortex, 55 in cortex, and 51 in whole blood that were significantly associated with AD dementia. By combining BGW-TWAS p-values across these three tissues, we obtained 93 significant risk genes including 29 genes primarily due to -eQTL and 50 novel genes. Utilizing protein-protein interaction network and phenotype enrichment analyses with these 93 significant risk genes, we detected 5 functional clusters comprised of both known and novel AD risk genes and 7 enriched phenotypes.
We applied BGW-TWAS and aggregated Cauchy test methods to integrate both - and -eQTL data of brain and blood tissues with GWAS summary data to identify risk genes of AD dementia. The risk genes we identified provide novel insights into the underlying biological pathways implicated in AD dementia.
全转录组关联研究(TWAS)是一种用于识别与复杂疾病相关的新基因的重要工具,这些基因的遗传效应可能通过转录组介导。TWAS利用参考遗传和转录组数据来估计目标基因表达定量性状的遗传效应大小(即广义表达定量性状位点,eQTL的效应大小)。然后,这些估计的效应大小被用作基于基因负担关联检验统计量的变异权重,便于利用全基因组关联研究(GWAS)数据绘制复杂疾病的风险基因图谱。然而,大多数现有的阿尔茨海默病(AD)痴呆症的TWAS主要集中在顺式eQTL,而忽略了潜在的反式eQTL。为了克服这一局限性,我们应用了贝叶斯全基因组TWAS(BGW-TWAS)方法,该方法纳入了大脑和血液组织的顺式和反式eQTL,以增强AD痴呆症风险基因的定位。
我们首先将BGW-TWAS应用于基因型-组织表达(GTEx)V8数据集,以估计前额叶皮质、皮质和全血组织的顺式和反式eQTL效应大小。随后,将估计的eQTL效应大小与AD痴呆症最新GWAS的汇总数据整合,以获得每种组织类型的AD痴呆症的BGW-TWAS(即基于基因的关联检验)p值。最后,我们使用聚合柯西关联检验来合并三个组织的TWAS p值,以获得每个基因的综合TWAS p值。
我们在前额叶皮质中鉴定出37个基因,在皮质中鉴定出55个基因,在全血中鉴定出51个与AD痴呆症显著相关的基因。通过合并这三个组织的BGW-TWAS p值,我们获得了93个显著的风险基因,包括29个主要由顺式eQTL导致的基因和50个新基因。利用这些93个显著风险基因进行蛋白质-蛋白质相互作用网络和表型富集分析,我们检测到由已知和新的AD风险基因组成的5个功能簇和7个富集表型。
我们应用BGW-TWAS和聚合柯西检验方法,将大脑和血液组织的顺式和反式eQTL数据与GWAS汇总数据整合,以识别AD痴呆症的风险基因。我们鉴定出的风险基因为AD痴呆症潜在的生物学途径提供了新的见解。