Khodadadzadeh Massoud, Sloan Aliza T, Jones Nancy Aaron, Coyle Damien, Kelso J A Scott
Intelligent Systems Research Centre, Ulster University, Derry/Londonderry, BT48 7JL, United Kingdom.
The Bath Institute for the Augmented Human, University of Bath, Bath, BA2 7AY, United Kingdom.
Res Sq. 2023 Jul 13:rs.3.rs-3088795. doi: 10.21203/rs.3.rs-3088795/v1.
Can infant exploration and causal discovery be detected using Artificial Intelligence (AI)? A recent experiment probed how purposeful action emerges in early life by manipulating infants' functional connection to an object in the environment (., tethering one foot to a colorful mobile). Vicon motion capture data from multiple infant joints were used here to create Histograms of Joint Displacements (HJDs) to generate pose-based descriptors for 3D infant spatial trajectories. Using HJDs as inputs, machine and deep learning systems were tasked with classifying the experimental state from which snippets of movement data were sampled. The architectures tested included k-Nearest Neighbour (kNN), Linear Discriminant Analysis (LDA), Fully connected network (FCNet), 1D-Convolutional Neural Network (1D-Conv), 1D-Capsule Network (1D-CapsNet), 2D-Conv and 2D-CapsNet. Sliding window scenarios were used for temporal analysis to search for topological changes in infant movement related to functional context. kNN and LDA achieved higher classification accuracy with single joint features, while deep learning approaches, particularly 2D-CapsNet, achieved higher accuracy on full-body features. For each AI architecture tested, measures of foot activity displayed the most distinct and coherent pattern alterations across different experimental stages (reflected in the highest classification accuracy rate), indicating that interaction with the world impacts the infant behaviour most at the site of organism∼world connection. Pairing theory-driven experimentation with AI tools thus opens a path to developing functionally-relevant assessments of infant behaviour that are likely to be useful in clinical settings.
能否使用人工智能(AI)来检测婴儿的探索行为和因果发现?最近的一项实验通过操纵婴儿与环境中物体的功能连接(例如,将一只脚系在一个彩色的活动装置上)来探究早期生活中有目的的行动是如何出现的。这里使用了来自多个婴儿关节的Vicon动作捕捉数据来创建关节位移直方图(HJD),以生成基于姿势的3D婴儿空间轨迹描述符。以HJD作为输入,机器学习和深度学习系统的任务是对从中采样运动数据片段的实验状态进行分类。测试的架构包括k近邻(kNN)、线性判别分析(LDA)、全连接网络(FCNet)、一维卷积神经网络(1D-Conv)、一维胶囊网络(1D-CapsNet)、二维卷积神经网络(2D-Conv)和二维胶囊网络(2D-CapsNet)。滑动窗口场景用于时间分析,以寻找与功能背景相关的婴儿运动中的拓扑变化。kNN和LDA使用单关节特征时实现了更高的分类准确率,而深度学习方法,特别是二维胶囊网络(2D-CapsNet),在全身特征上实现了更高的准确率。对于测试的每种AI架构,足部活动的测量在不同实验阶段显示出最明显和连贯的模式变化(反映在最高的分类准确率中),表明与世界的互动在生物体与世界连接的部位对婴儿行为影响最大。因此,将理论驱动的实验与AI工具相结合,为开发可能在临床环境中有用的与功能相关的婴儿行为评估开辟了一条道路。